期刊文献+

一类非局部粘性水波模型的数值格式

Numerical Approximation to a Shallow Wave Model with a Nonlocal Viscous
在线阅读 下载PDF
导出
摘要 本文主要讨论带非局部粘性项水波方程的数值方法.我们建立了一种求解这类粘性水波方程的数值方案.该方案有效解决了非局部粘性项与非线性项的离散问题.所提的格式包括对α阶分数阶项的2-α阶格式和对非线性项的线性化处理的混合格式.我们证明了这种格式是无条件稳定的,并得出线性Crank-Nicolson加2-α格式的收敛阶是O(?t32+N1-m)的结论.一系列的数值例子验证了理论证明的正确性.最后,我们用所提数值格式研究了粘性水波方程的渐近衰减率,并讨论了各种参数项对衰减率的影响. we focus on the numerical investigation of a water wave model with a nonlocal vis- cous dispersive term. We construct and analyze a schema to numerically solving the nonlocal water wave model. The key for the success consists in a particular combination of the treatments for the nonlocal dispersive term and nonlinear convection term. The proposed methods employ a known (2 - a)-order schema for the a-order fractional derivative and a mixed linearization of the nonlinear term. A rigorous analysis shows that the proposed schema is unconditionally stable, and the linearized Crank-Nicolson plus (2 - α)-order schemes is O(Δt32+N1-m). A series of numerical examples is presented proposed methods are used to investigate nonlocal viscous wave equation, as well as to confirm the theoretical prediction. Finally the the asymptotical decay rate of the solutions of the the impact of different terms on this decay rate.
作者 张俊 李物兰
出处 《工程数学学报》 CSCD 北大核心 2015年第4期577-589,共13页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11461012) 温州医科大学科研课题项目(QTJ11014) 浙江省教育厅科研资助项目(Y201328047)~~
关键词 分数阶 无条件稳定 有限差分法 谱方法 衰减率 fractional order unconditionally stable finite difference methods spectral methods decay rate
  • 相关文献

参考文献1

二级参考文献12

  • 1Bona,Chen,Saut.Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory[J]. Journal of Nonlinear Science . (4)
  • 2Amick, C. J,Bona, J. L,Schonbek, M. E.Decay of solutions of some nonlinear wave equations. J. Di?. Eqs . 1989
  • 3Brandolese, L,Schonbek, M.Large time decay and growth for solutions of a viscous boussinesq system. .
  • 4Chen, M,Dumont, S,Dupaigne, L. et al.Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete Contin. Dyn. Syst . 2010
  • 5Chen, M,Goubet, O.Long-time asymptotic behavior of two-dimensional dissipative Boussinesq sys- tems. Discrete Contin. Dyn. Syst. Ser. S . 2009
  • 6Dutykh,D.Visco-potential free-surface ?ows and long wave modelling. European Journal of Mechanics B/Fluids . 2009
  • 7Dutykh, D,Dias, F.Viscous potential free-surface ?ows in a ?uid layer of finite depth. C. R. Math. Acad. Sci. Paris . 2007
  • 8Hayashi, N,Kaikina, E,Naumkin, P,Shishmarev, I.Asymptotics for Dissipative Nonlinear Equa- tions. Lecture Notes in Mathematics . 2006
  • 9Vento,S.Asymptotic behavior for dissipative KdV equations. .
  • 10Liu,P.L F,and Orfila ,A.Viscous effects ontransient long wave propagation. Journal of Fluid Mechanics . 2004

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部