期刊文献+

基于改进半监督局部保持投影算法的故障诊断 被引量:13

Fault diagnosis based on improved semi-supervised locality preserving projections
在线阅读 下载PDF
导出
摘要 为解决在少量标记样本的条件下故障诊断困难的问题,提出一种基于改进半监督局部保持投影(ISS-LPP)的故障诊断方法。ISS-LPP算法利用部分标记样本的标签信息调整原始特征空间中样本间的权值矩阵,并根据所有样本在特征空间的分布情况自适应的调整邻域参数,寻找数据的低维本质流形,得到原始特征空间样本数据的低维特征向量和投影转换矩阵。以得到的低维特征向量为输入,建立分类器,识别和判断故障类型。将ISS-LPP算法应用于滚动轴承的故障诊断。实验结果表明:该方法能够在标记样本较少时,提高轴承的故障诊断精度。 In order to diagnose the fault effectively with a small number of labeled samples, a method of fault diagnosis based on improved semi-supervised locality preserving projections was proposed. The method of ISS-LPP used the information of some labeled samples to adjust the weight matrix among all samples in the original characteristic space. The neighborhood parameter could he adjusted automatically according to the distribution of the all samples. Therefore, the low-dimensional manifold could be found. So the low-dimensional eigenvectors and the projection matrix were achieved from the original characteristic space by ISS-LPP. With the low-dimensional eigenvectors as inputs, classifiers were established for identifying fault types. The method of ISS-LPP was applied for the fault diagnosis of roller bearing. The results indicate that the proposed method can diagnose bearing fault in high accuracy with a small number of labeled samples.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2059-2064,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(E51205405)~~
关键词 故障诊断 改进半监督局部保持投影 权值矩阵 邻域参数 滚动轴承 fault diagnosis improved semi-supervised locality preserving projections weight matrix neighborhood parameter roller bearing
  • 相关文献

参考文献13

二级参考文献93

  • 1祁亨年,杨建刚,方陆明.基于多类支持向量机的遥感图像分类及其半监督式改进策略[J].复旦学报(自然科学版),2004,43(5):781-784. 被引量:14
  • 2于德介,程军圣,杨宇.Hilbert-Huang变换在齿轮故障诊断中的应用[J].机械工程学报,2005,41(6):102-107. 被引量:77
  • 3Zhang Chaohui,Zhu Ge,Peng Donglin,Zhang Xinghong,Wang Xianquan.NEW DEMODULATION TECHNOLOGY OF OPTIMIZING ENERGY OPERATOR AND APPLICATION TO GEAR FAULT DIAGNOSIS[J].Chinese Journal of Mechanical Engineering,2005,18(4):627-630. 被引量:2
  • 4朱树先,张仁杰.BP和RBF神经网络在人脸识别中的比较[J].仪器仪表学报,2007,28(2):375-379. 被引量:30
  • 5TURK M, PENTLAND A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) : 71-86.
  • 6BELHUMEUR P, HESPANHA J, KRIEGMAN D. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711-720.
  • 7CHEN L F, LIAO M T, YU G J. A new LDA-based face recognition system which can solve the small sample size problem [ J ]. Pattern Recognition, 2000, 33 ( 1 ) : 1713-1726.
  • 8YANG J, ZHANG D, FRANGI A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26( 1 ) : 131-137.
  • 9YANG J, ZHANG D, XU Y, et al. Two-dimensional discriminant transform for face recognition [ J ]. Pattern Recognition, 2005,38 : 1121-1124.
  • 10LI H, JIANG T, ZHANG K. Efficient and robust feature extraction by maximum margin criterion[ J]. IEEE Transactions on Neural Networks, 2006,17 ( 1 ) : 1157-1165.

共引文献133

同被引文献65

引证文献13

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部