期刊文献+

正射影像镶嵌线自动搜索的视差图算法 被引量:14

A Seam Line Detection Algorithm for Orthophoto Mosaicking Based on Disparity Image
在线阅读 下载PDF
导出
摘要 提出了一种基于正射影像视差图的区域级镶嵌线搜索算法。首先利用半全局约束立体匹配算法(semi-global matching,SGM)分别计算立体像对的左右视差图,并通过自适应阈值化去除细小的噪声区域,再经数学形态学方法进一步削弱噪声影响和填补小的漏洞区域,得到了较为精细的房屋等非地面区域的分割结果,从而分离出地面与非地面区域;然后采用改进的贪婪蛇搜索算法进行镶嵌线搜索,以提高算法的稳健性。试验表明,本文算法能很好地避开房屋等明显突出地表的实体,得到不穿越非地面区域的最优路径。 This paper proposes a regional seam line detection algorithm based on the disparity image of the orthophoto. Firstly, the disparity images of the stereo pair are generated by using the SGM (semi-global matching) method, and the small noises are removed through the adaptive threshold. Then, the mathematical morphology method is used to further eliminate the noises and to fill the small holes on the disparity image in order to accurately separate out the non-ground area. Lastly, the seam line is detected using the improved greedy snake algorithm which with better robustness. The experimental result has shown that our method is effective and is able to acquire an optimized seam line that passed around the entities above the ground.
出处 《测绘学报》 EI CSCD 北大核心 2015年第8期877-883,共7页 Acta Geodaetica et Cartographica Sinica
基金 国家973计划(2012CB719902) 国家自然科学基金(41371432) 国家高分辨率对地观测系统重大专项(50-H31D01-0508-13/15)~~
关键词 正射影像(DOM) 镶嵌线 视差图 贪婪蛇搜索算法 digital orthophoto map(DOM) seam line disparity image greedy snake algorithm
  • 相关文献

参考文献18

二级参考文献80

共引文献191

同被引文献92

  • 1YUAN Xiuxiao.PRINCIPLE,SOFTWARE AND EXPERIMENT OF GPS-SUPPORTED AEROTRIANGULATION[J].Geo-Spatial Information Science,2000,3(1):24-33. 被引量:8
  • 2潘励,张志华,张剑清.融合区域分割和边缘信息的居民地提取方法[J].武汉大学学报(信息科学版),2006,31(8):671-674. 被引量:14
  • 3牟凤云,张增祥,迟耀斌,刘斌,周全斌,王长有,谭文彬.基于多源遥感数据的北京市1973—2005年间城市建成区的动态监测与驱动力分析[J].遥感学报,2007,11(2):257-268. 被引量:140
  • 4Pesaresi M, Huadong G, Blaes X, et al. A Global Human Settlement Layer from Optical HR/VHR RS Data: Concept and First Results [J]. IEEE Journal of Selected Topics in Applied Earth Ob- servations and Remote Sensing, 2013, 6(5): 2 102- 2 131.
  • 5Graesser J, Cheriyadat A, Vatsavai R R, et al. Im- age Based Characterization of Formal and Informal Neighborhoods in an Urban Landscape[J]. IEEE Journal of Selected Topics in Applied Earth Ob- servations and Remote Sensing, 2012, 5(4) : 1 164- 1 176.
  • 6Yan W Y, Shaker A, E1-Ashmawy N. Urban Land Cover Classification Using Airborne LiDAR Data A Review[J]. Remote Sensing of Environment, 2015, 158(0): 295-310.
  • 7Tong X, Xie H, Weng Q. Urban Land Cover Clas- sification with Airborne Hyperspectral Data.. What Features to Use? [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(10).. 3 998-4 009.
  • 8Longbotham N, Chaapel C, Bleiler L, et al. Very High Resolution Multiangle Urban Classification A- nalysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1 155-1 170.
  • 9Rau J, Jhan J, Hsu Y. Analysis of Oblique Aerial Images for Land Cover and Point Cloud Classifica- tion in an Urban Environment[J]. IEEE Transac- tions on Geoscience and Remote Sensing, 2015, 53 (3).. 1 304-1 319.
  • 10Rottensteiner F, Sohn G, Gerke M, et al. Results of the ISPRS Benchmark on Urban Object Detection and 3D Building Reconstruction[J]. ISPRS Jour- nal of Photogrammetry and Remote Sensing, 2014, 93.. 256-271.

引证文献14

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部