期刊文献+

基于线性变换耦合混沌系统的强劲S盒构造算法研究 被引量:1

ON CONSTRUCTION ALGORITHM OF STRONG S-BOXES BASED ON LINEAR TRANSFORMATION COUPLING CHAOTIC SYSTEM
在线阅读 下载PDF
导出
摘要 由于当前的图像块加密算法中的S盒在替代-置乱过程中都需要使用独立的轮密钥,导致了较高的时间成本和较低的加解密速度。对此,设计了一个线性变换函数;并将其耦合3D Lorenz系统,提出了强劲S盒生成算法。该算法是通过线性变换函数直接将混沌系统的轨迹转变成伪随机序列来产生S盒,在替代阶段可有效避免独立轮密钥的使用,显著降低计算复杂度。借助MATLAB仿真平台,对该算法以及当前其他S盒算法所产生的S盒的性能进行对比测试,结果表明:与其他S盒算法生成的S盒相比,该算法的S盒具有更高的非线性特征,满足严格雪崩准则,具有更好的抗差分能力;用该S盒加密时,其计算效率更高。 Higher time costs and low encryption-decryption speed are induced due to the S-boxes in current image blocks encryption algorithms have to use independence round keys during permutation-substitution process. Therefore,we design a linear transformation function and propose the construction algorithm of strong S-boxes by coupling the linear transformation function with 3D Lorenz system. This algorithm generates the S-boxes by directly converting the trajectories in chaotic system into pseudo-random sequences through linear transformation function. It effectively eliminates the use of independent round keys in substitution phase and thus significantly reduces computation complexity. The properties of S-boxes generated by this algorithm and other S-boxes algorithm are compared and tested on MATLAB simulation platform. Results show that comparing with the S-boxes generated by other S-boxes algorithm,this S-box has higher non-linearity feature and meets the strict avalanche criterion as well as better has anti-differential property; when encrypting with this S-box,its computation efficiency is also higher.
出处 《计算机应用与软件》 CSCD 2015年第8期304-307,323,共5页 Computer Applications and Software
基金 河南省高等学校青年骨干教师资助计划(2014GGJS-155)
关键词 线性变换函数 混沌系统 系统轨迹 S盒 严格雪崩准则 Linear transformation function Chaotic system System trajectory S-boxes Strict avalanche criterion
  • 相关文献

参考文献12

  • 1任高峰,乔树山,黑勇.祖冲之算法在数字图像加密中的应用与实现[J].科学技术与工程,2013,21(3):766-770. 被引量:9
  • 2蒲昌玖.一种多混沌的彩色图像认证加密算法[J].科学技术与工程,2013,21(20):5843-5847. 被引量:2
  • 3Ahmed A. Abd El-I>atif,Li Li , et al. A new approach to chaotic im-age encryption based on quantum chaotic system, exploiting colorspaces[ J]. Signal Processing,2013 ,93( 11 ) :2986 -3000.
  • 4王震,黄霞,李玉霞,宋晓娜.A new image encryption algorithm based on the fractional-order hyperchaotic Lorenz system[J].Chinese Physics B,2013,22(1):124-130. 被引量:21
  • 5He I), Chen Y, Chen J. Nonlinear dynamics, cryptanalysis and im-provement of an extended chaotic maps based key agreement protocol[J]. Nonlinear Dyn ,2012 ,35 (14) : 1456 - 1454.
  • 6武相军,路杨,王红涛,等.应用于多混沌映射多动态S盒的分组密码系统:中国,201019097007. 9[P]. 2010-02-08.
  • 7Chen G, Chen Y,Liao X. An extended method for obtaining S-hoxesbased on three-dimensional chaotic Baker maps [ J ]. Chaos SolitonsFractals, 2007,40(31) :571 -577.
  • 8Daemen J, Rijmen V. The design of Kijndael-AES: the advanced en-cryption standard[ J]. Springer,2002,36(23) :1876 - 1883.
  • 9Hussain I,Shah T, Aslam S K. Graphical SAC analysis of S8 APA S-hox[ J ]. Adv Algebra, 2010,3 (2 ) :57 - 62.
  • 10Chen G, Chen Y, Liao X. An extended method for obtaining S-boxesbased on three-dimensional chaotic Baker maps [ J]. Chaos SolitonsFractals,2007,31( 35) :571 -577.

二级参考文献48

  • 1李太勇,贾华丁,吴江.基于三维混沌序列的数字图像加密算法[J].计算机应用,2006,26(7):1652-1654. 被引量:30
  • 2Yu W W and Cao J D 2006 Phys. Lett. A 356 333.
  • 3Wang K, Pei W J, Zhou J T, Zhang Y F and Zhou S Y 2011 Acta Phys. Sin. 60 070503.
  • 4Wang Z, Huang X, Li N and Song X N 2012 Chin. Phys. B 21 050506.
  • 5Tang Y, Wang Z D and Fang J A 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 2456.
  • 6Tong X J and Cui M G 2009 Signal Processing 89 480.
  • 7Kocarev L and Jakimoski G 2001 Phys. Lett. A 289 199.
  • 8Yang T, Wu C W and Chua L O 1997 IEEE Trans. Circuits Syst. I 44 469.
  • 9Wang X Y and Zhao J F 2010 Neurocomputing 73 3224.
  • 10Kiani-B A, Fallahi K, Pariz N and Leung H 2009 Commun. Nonlinear Sci. Numer Simulat. 14 863.

共引文献29

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部