期刊文献+

基于OKID方法的多变量时滞过程解耦控制

OKID Based Decoupling Control for Multivariable Process with Time Delay
在线阅读 下载PDF
导出
摘要 实际工业生产中存在着大量多变量时滞过程,由于此类系统输入输出变量间的耦合及时滞因子的影响,使得针对这类系统的控制效果往往达不到令人满意的效果。本文利用解耦控制器,首先对多变量时滞过程的输入输出进行解耦;由于解耦得到的子系统模型非常复杂,因此对解耦后的复杂系统模型提取公共时滞因子,然后用观测器/卡尔曼滤波器辨识(OKID)算法对解耦后的系统进行模型精简,基于该简化模型使用极点配置方法设计离散时间PID控制律,实现解耦系统对定值信号的跟踪控制。通过对一个化工过程系统进行仿真研究,证明了所提方法的有效性。 There are many multivariable system s with time delay i n the industrial process . Due to the coupling and time delay in these processes, the control performance s are usually not satisf ying . In this article, a model simplification method together with a digital PID controller design ing method is employ ed to the decoupled subsystems . Firstly, the multivariable process with time delay is decoupled into subsystems which are quite complicated. Then, the decoupled subsystems are simplified by a model-reduction method , using observer/Kalman filter identification (OKID) method, to obtain the discrete-time state-space models without involving the common time delay term . Based on the obtained simplified model, a pole assignment method is utilized to design discrete-time PID controller s which can guarantee the set-point tra cking performance of the decoupled subsystems. At last, an illustrative example is given to demonstrate the effectiveness of the proposed method.
出处 《控制工程》 CSCD 北大核心 2015年第5期820-825,共6页 Control Engineering of China
基金 国家自然科学基金(61374047)
关键词 多变量时滞过程 观测器/卡尔曼滤波器辨识 极点配置 解耦控制 Multivariable process with time delay OKID p ole assignment decoupling control
  • 相关文献

参考文献14

  • 1黄灿,桂卫华,阳春华,蒋朝辉,谢永芳.多变量时滞过程解耦Smith控制[J].控制理论与应用,2010,27(10):1393-1398. 被引量:14
  • 2尹成强,岳继光.多变量时滞过程的解耦控制方法研究[J].测控技术,2009,28(7):52-55. 被引量:3
  • 3Smith O J M. Closer control of loops with dead times[J]. ChemicalEngineering Progress, 1957, 53(5): 217-219.
  • 4Ogunnaike B A, Ray W H. Multivariable controller design for linearsystems having multiple time delays[J]. AIChE Journal, 1979,25(6):1043-1057.
  • 5Jerome N F, Ray W H. High - Performance multivariable controlstrategies for systems having time delays[J]. AIChE Journal, 1986,32(6):914-931.
  • 6Maciejowski J M. Robustness of multivariable Smith predictors[J].Journal of Process Control, 1994,4(1): 29-32.
  • 7Wang Q G, Zhang Y, Chiu M S. Decoupling internal model control formultivariable systems with multiple time delays[J]. ChemicalEngineering Science, 2002, 57(1): 115-124.
  • 8Tavakoli S,Griffin I, Fleming P J. Tuning of decentralised PI (PID)controllers for TITO processes[J]. Control engineering practice, 2006,14(9): 1069-1080.
  • 9Juang N J. Applied System Identification[M]. Englewood Cliffs, NJ:Prentice Hall. 1994 ..
  • 10Moore B. Principal component analysis in linear systems:Controllability, observability, and model reduction[J]. AutomaticControl, IEEE Transactions on, 1981,26(1): 17-32.

二级参考文献7

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部