期刊文献+

基于相似极值延拓的EMD端点效应改进方法 被引量:3

Improved Method for End Effects of EMD Based on Similar Extreme Extension
在线阅读 下载PDF
导出
摘要 经验模态分解(EMD)是HHT变换处理非线性、非平稳信号的关键步骤。原始故障信号经过EMD分解为固有模态函数后进行希尔伯特变换,求出信号的瞬时频率来反映故障特征。但分解过程中产生的端点效应问题使得求出的瞬时频率失去准确性。文章在研究相似极值延拓算法的基础上提出了一种改进算法,增加了端点处是否作为极值点的判断,避免了端点数值超出包络线所造成的分析结果失真问题。仿真分析和实例故障诊断结果表明,文中算法计算效率高,能有效抑制经验模态分解过程中的端点飞翼现象。 Empirical mode decomposition ( EMD) is the key step of Hilbert-Huang transform in the process-ing non-linear and non-stationary signal. The original fault signal is decomposed into intrinsic mode function on Hilbert transform by Empirical mode decomposition, the instantaneous frequency of the signal to reflect the characteristics of the fault. But the end effects of EMD make the instantaneous frequency lost accuracy during the decomposition process. In this paper a improved method was developed based on the study of Similar extreme extension. The problem of the analysis distortion caused by the endpoint value beyond the envelope is avoided by increasing the judgment of whether the endpoint as the extreme point. Simulation a-nalysis and instance of fault diagnosis results show that the algorithm is of high efficiency and can effectively inhibit endpoint flying wing phenomenon in the process of empirical mode decomposition.
出处 《组合机床与自动化加工技术》 北大核心 2015年第9期78-80,85,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 吉林省科技厅基金资助项目(20110303)
关键词 经验模态分解 端点效应 相似极值延拓 EMD end effects similar extreme extension
  • 相关文献

参考文献11

二级参考文献93

共引文献165

同被引文献34

  • 1金晶,王行愚,罗先国,王蓓.PSO-ε-SVM的回归算法[J].华东理工大学学报(自然科学版),2006,32(7):872-875. 被引量:8
  • 2熊伟丽,徐保国.粒子群算法在支持向量机参数选择优化中的应用研究[C]//中国控制与决策学术年会论文集,2007:447-452.
  • 3Cheng J, Yu D, Yu Y. Research on the intrinsic mode func- tion (IMF) criterion in EMD method [J]. Mechanical Sys- tems & Signal Processing, 2006, 20(4) :817 -824.
  • 4Smith J S. The local mean decomposition and its application to EEG perception data[ J]. Journal of the Royal Society In-terface, 2006, 2(5):443-54.
  • 5Vapnik V N. Statistical learning theory [ M ]. New York : John Wiley & Sons, Inc. , 1998.
  • 6Vapnik V N. The Nature of Statistical Learning Theory[J]. Neural Networks IEEE Transactions on, 1995, 10 (5): 988 - 999.
  • 7孟祥国,马军,段昕.基于统计学习理论的支持向量机算法研究[C]//2006年全国理论计算机科学学术年会论文集,2006.
  • 8Chang Chih-Chung, Lin Chih-Jen. LIBSVM: a library for support vector machines [ EB/OL]. http://www, csie. ntu. edu. tw! - cjlin/libsvm.
  • 9Kennedy J, Eberhart R C. Particle swarm optimization [C]//Por IEEE Int' 1 Conf on Neural Networks. Piscat- away : IEEE Service Center, 1995 : 1942 - 1948.
  • 10Teotrakool K, Devaney M J, Eren L. Bearing Fault Detec- tion in Adjustable Speed Drives via a Support Vector Ma- chine with Feature Selection using a Genetic Algorithm [ C ]//Conference Record -IEEE Instrumentation and Meas- urement Technology Conference. 2008 : 1129 - 1133.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部