期刊文献+

基于加权中值各向扩散模型的焊接缺陷实时检测算法 被引量:2

Weld Defects Detection Technology of Radiographic Images Based on Weight Median Anisotropic Diffusion Model and Region of Interest Principle
在线阅读 下载PDF
导出
摘要 针对当前焊接缺陷识别算法难以检测出低对比度噪声焊接缺陷,以及难以满足实时检测需求等不足,文章提出了加权中值各向扩散模型耦合感兴趣区域的放射图像焊接缺陷实时检测技术。基于感兴趣区域原理,确定出焊接缺陷位置,降低复杂度,并可显著提高检测精度;引入中值滤波,建立焊接缺陷区域图像梯度计算模型;再设置门槛系数K,嵌入非线性S函数,设计新的边缘停止规则;并融合锐化算子,设计了加权中值各向扩散模型,完成焊接缺陷检测。文中设计的加权中值各向扩散模型能够根据局部梯度幅值,自适应地完成增强、锐化焊接缺陷以及平滑放射图像背景。仿真结果显示:与当前焊接缺陷检测技术相比,该方法能够更好地增强焊接缺陷细节,可有效区分图像背景与焊接缺陷特征;且拥有更高的缺陷检测精度与效率。 In order to Solve these defects such as can not detection the weld defects of low contrast and meet the requirements of real time in current weld defects detection algorithms, the weld defects real time detec-tion technology based on weight median anisotropic diffusion model and region of interest principle was pro-posed in this paper. The location of weld defects was determined by region of interest principle to reduce the complexity and improve the detection precision;then the image gradient computation model of weld defects was established by introducing the median filter. The new edge stopping rule was designed by embedding the non-linear S function and setting the threshold coefficient K. And the weighted median anisotropic diffusion model was designed by integrating the sharpening operator to finish the weld defects detection. This model can adaptively enhancement, sharpen weld defects and smooth the background of radiation image according to the local gradient magnitude. Simulation results showed that:this defects detection technology can better enhance the weld defects details to efficiently distinguish the image background and weld defects Features;and the defects detection precise and efficiency was higher.
作者 占俊
出处 《组合机床与自动化加工技术》 北大核心 2015年第9期86-90,共5页 Modular Machine Tool & Automatic Manufacturing Technique
基金 江西省自然科学基金项目(2011GZW0049) 江西省教育厅项目(GJJ12632)
关键词 加权中值各向扩散 感兴趣区域 非线性S函数 weight median anisotropic diffusion model region of interest non-linear S function
  • 相关文献

参考文献15

  • 1贾天义,蔡安克,康惠春,范随长.铸造缺陷无损检测装置的研究[J].铸造技术,2009,30(12):1510-1512. 被引量:6
  • 2赵丽,孔贵廷.无损检测技术在铸件尺寸检测中的应用[J].铸造技术,2014,35(6):1364-1365. 被引量:4
  • 3Yong Wang, Hui Guo. Weld Defect Detection of X-ray Ima- ges Based on Support Vector Machine [ J ]. IETE Technical Review,2014,31 (2) : 137 - 142.
  • 4吴一全,叶志龙,万红,刚铁.基于Contourlet和KPCA的焊接缺陷图像特征提取[J].焊接学报,2014,35(7):17-21. 被引量:8
  • 5B Venkatraman, M M Anishin Raj, V Vaithiyanathan. Weld Defect Detection using Iterative Image Reconstruction Meth- ods [J]. Indian Journal of Science and Technology, 2013, 6(4) : 4378 -4383.
  • 6Yong Wang, Hui Guo. Weld Defect Detection of X-ray Ima- ges Based on Support Vector Machine [ J ]. IETE Technical Review, 2014, 31(2) : 137 - 142.
  • 7晏云,戴伟忠.解非线性薛定谔方程的广义时域有限差分方法的紧致格式[J].高等学校计算数学学报,2014,36(1):49-57. 被引量:2
  • 8Debashis Sen, Sankar K Pal. Gradient histogram: Threshol- ding in a region of interest for edge detection[ J]. Image and Vision Computing, 2009, 28 (4) : 677 - 695.
  • 9Zhengqiu Zhang, Kaiyu Liu, Li Zhu. The new approxima- tion operators with S functions [ J ]. Journal of Applied Math- ematics and Computing, 2013, 42( 1 ): 455-468.
  • 10Jianji Wang, Nanning Zheng, Yuehu Liu. Parameter anal- ysis of fractal image compression and its applications in im- age sharpening and smoothing [ J ]. Signal Processing : Im- age Communieatiota, 2013, 28(6): 681 -687.

二级参考文献30

  • 1徐鹏飞,张华,贾剑平.一种新的水下焊缝图像信号提取方法[J].上海交通大学学报,2008,42(S1):97-99. 被引量:2
  • 2石端虎,刚铁,袁媛.复杂结构中焊接缺陷的空间分布特征[J].焊接学报,2005,26(11):71-74. 被引量:8
  • 3田原,都东,蔡国瑞,王力,张骅.Automatic Defect Detection in X-Ray Images Using Image Data Fusion[J].Tsinghua Science and Technology,2006,11(6):720-724. 被引量:8
  • 4Danm W, Rose P, Heidt H, et al. Automatic recognition of weld defects in X-ray inspection [ J ] .British Journal of NDT,1987, 29( 2 ):79-82.
  • 5Eckelt B, Meyendortf N, Morgner W, et al. Use of automatic image processing for monitoring of welding process and weld inspection [ A ]. Proc,. 12th world cont. on NDT [ C ], Amsterdam , 1989. 37-41.
  • 6Liang D, Zhen W, Zhang G, et al. Automatical identification of the defect level of welding seam based on X-ray image [ A ] .Proceedings of international symposium on nondestructive testing and stress-strain measurement [ C ]. Tokyo, 1992.267~274.
  • 7Liao T W, Li D M, Li Y M. Detection of welding flaws from radiographic image s with fuzzy clustering methods [ J ].Fuzzy Set and Systems, 1999, 108(2): 145-158.
  • 8Lashkia. V Defect detection in X-ray images using fuzzy reasoning [ J]. Image and Vision Computing, 2001, 19 (5):261-269.
  • 9Yi Sun, Enliang Wang, Ping Zhou, et al. A real-time weld defect inspection system in X-ray images [ J ]. Proceedings of SPIE, 2002, 492 (3): 282-287.
  • 10Weerasinghe Chaminda, Ji Lilian, Yan Hong. A new methodfor ROI extraction from motion affected MR images based onsuppression of artifacts in the image background [J]. SignalProcessing, 2000, 80(5):867-881.

共引文献61

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部