期刊文献+

基于量子粒子群和蚁群算法的物流配送路径优化 被引量:2

Optimization of Logistics Distribution Path Based on QPSP and ACO
在线阅读 下载PDF
导出
摘要 针对给定的设施点和客户点信息,建立了完整的LAP-VRP数学模型,LAP用于选址模型研究,VRP用于车辆路径优化分析。采用量子粒子群算法对LAP进行求解,将选址结果应用到VRP模型中,并通过蚁群算法对带时间窗和不带时间窗的VRP问题进行了求解。仿真结果表明,基于量子粒子群算法和蚁群算法的LAP-VRP模型求解具有较强的全局寻优能力,能够在较短时间内找到最优解,是解决物流配送路径优化的有效算法。 In this paper, we built a whole LAP-VRP mathematic model based on the given establishment points and customer points, while LAP was applied in the base station location and VRP was applied in the optimization analysis of vehicle routing. Then we used the quantum particle swarm algorithm to be the solution of the LAP model and applied its results into the VRP model. Hence the VRP model, with and without time win- dows could be solved by the ant colony algorithm. The experiment result showed that QPSO and ACO algorithm had a strong global search ability, which could efficiently solve the LAP-VRP problem in the shortest time, hence, the method presented was an effective algorithm to solve the routing problem.
作者 吴婷 余胜威
出处 《物流技术》 2015年第16期131-135,共5页 Logistics Technology
关键词 量子粒子群算法 蚁群算法 物流配送 路径优化 quantum particle swarm algorithm ant colony algorithm logistics distribution path optimization
  • 相关文献

参考文献9

二级参考文献103

共引文献196

同被引文献16

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部