期刊文献+

基于纹理的SAR图像感知质量评估 被引量:2

Perceptual quality assessment of a SAR image based on textural features
在线阅读 下载PDF
导出
摘要 传统的SAR(合成孔径雷达)图像质量评价方法没有考虑视觉感知特性,导致主客观评价不一致。为了改善SAR图像质量评估方法的感知特性,提出了一种基于纹理的符合人类视觉系统感知性的SAR图像质量评估方法。由于SAR图像具有很强的纹理性,所以提取SAR图像的灰度共生矩阵并计算它的对比度,然后利用视觉对比敏感度函数与小波变换的倍频程特性来加权纹理特征的结构信息。仿真实验结果表明:具有感知特性的SAR图像质量评估方法较之传统方法更充分的利用了纹理结构特性,不仅能够反映出干扰对不同纹理区域的影响,而且能与人类视觉系统保持高度一致。通过对SAR图像进行感知质量评估可以为SAR的干扰效能提供更有效的依据,有利于干扰技术和干扰样式的优化。 Without considering perception characteristics of the human visual system ( HVS), traditional SAR ( synthetic aperture radar) image quality assessment methods often lead to inconsistency in subjective and objective eval- uations. A texture-based SAR image quality assessment algorithm that accords with human visual perception is pro- posed in this paper. A SAR image has a strong texture property, thus the gray level co-occurrence matrix of this image is extracted and its contrast is calculated; then weigh the structural information of texture characteristics by combining the characteristics of the visual contrast sensitivity function (CSF) with frequency of wavelet transform. The results of simulation indicate that the proposed method makes better use of the texture and structure features, and it can not only assess the jamming effect more accurately in different texture regions, but also keep highly consistent with the human visual system. The proposed method affords better warranty to evaluate the interference effect, which is advantageous to the interference technology and interference pattern optimization.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第8期1137-1142,共6页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(61201238)
关键词 SAR图像 纹理 人类视觉系统 图像质量评估 感知特性 灰度共生矩阵 对比敏感度函数 SAR image textural features image quality assessment perception characteristics gray level co-occurrence matrix contrast sensitivity function
  • 相关文献

参考文献15

  • 1OLIVER C, QUEGAN S. Understanding synthetic aperture radar images [ M ]. Raleigh: SciTech Publishing, 2004: 1- 50.
  • 2柏仲干,谢虹,马孝尊,童旭平,陈丽.SAR干扰/抗干扰技术的现状与发展[J].电光与控制,2012,19(2):47-53. 被引量:15
  • 3马俊霞,蔡英武,陈惠连.SAR压制式干扰仿真及效果评估[J].信息与电子工程,2004,2(2):109-113. 被引量:10
  • 4WANG X, YU W, QI X, et al. Radiofrequency interference suppression in synthetic aperture radar based on singular spectrum analysis with extended-FAPI subspace tracking [J]. Radar, Sonar & Navigation IET, 2012, 6(9) : 881- 890.
  • 5孙云辉,李芳倩,冯建伟.基于SAR图像的欺骗式干扰效果评估研究[J].航天电子对抗,2006,22(2):31-34. 被引量:4
  • 6JIAO Shuhong, DONG Weisheng. SAR image quality assess- ment based on SSIM using textural feature[ C]//2013 Sev- enth International Conference on Image and Graphics (ICIG). Qingdao, China, 2013 : 281-286.
  • 7ZHANG Han, LI Yu, SU Yi. SAR image quality assessment using coherent correlation function [ C ]//2012 5th Interna- tional Congress on Image and Signal Processing (CISP). Chongqing, China, 2012: 1129-1133.
  • 8李源.基于均方误差的逆合成孔径雷达干扰效果评估[J].信息与电子工程,2008,6(5):342-345. 被引量:9
  • 9ROSENBERG L, GRAY D. Anti-jamming techniques for multichannel SAR imaging [ J ]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3) : 234-242.
  • 10ZHOU Wang, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural simi- larity[J]. IEEE Transactions on Image Processing, 2004, 13(4) :600-612.

二级参考文献82

共引文献44

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部