期刊文献+

视频序列中的目标检测

Target detection in video sequence
在线阅读 下载PDF
导出
摘要 重点研究视频序列中运动目标的提取、跟踪、分类等问题,最终实现了一个完整的目标检测系统。首先,考虑到算法的复杂度和检测的实时性需求,优选了背景差与帧差相结合的检测方法,通过背景实时更新,达到了一个较好的检测效果。其次,充分考虑了卡尔曼滤波跟踪的简单、高效等特性,通过计算当前目标与候选目标之间的欧氏距离来寻找最佳匹配目标和区分相交物体。再者,提出了一种先用Adaboost算法获得各个目标的初分类,再采用BP神经网络对目标进行细分类的方法,实践证明,该方法在保证对绝大部分人、自行车、汽车有很好的分类效果外,对大部分杂物也能有较好的区分。最后,通过Matlab编程,设计并实现了一个完整的运动目标检测系统。 The extraction,tracking and classification of moving target in video sequence are studied,and a whole target detection system was achieved. Considering the complexity of the algorithm and the real?time requirement of the detection,the detection method combining background difference with frame difference is optimized and selected,and a better detection effect was achieved by updating the background in real?time. Since Kalman filtering tracking is simple and efficient,the Euclidean dis?tance between current target and candidate target is calculated to search for the best matching target and distinguish intersecting target. A novel method is proposed,which applies Adaboost algorithm to acquire the preliminary classification of each target, and makes use of BP neural network to classify the target in detail. The practical results prove that this method can ensure a preferable classification effect to majority of persons,cars and bikes,and distinguish most varia better. An integral detection sys?tem of moving target was designed and implemented by Matlab programming.
出处 《现代电子技术》 北大核心 2015年第19期68-71,共4页 Modern Electronics Technique
基金 江苏省自然科学基金(BK20131280)
关键词 目标提取 目标跟踪 目标分类 目标检测系统 target extraction target tracking target classification target detection system
  • 相关文献

参考文献16

  • 1HUANG Jinjie,JIANG Yongfu.An improved approach to calculation of the optical flow field for color image sequences[C]//Proceedings of 2010 International Forum on Strategic Technology.Ulsan:IEEE,2010:312-317.
  • 2INDU S,GUPTA M,BHATTACHARYYA A.Vehicle tracking and speed estimation using optical flow method[J].International Journal of Engineering Science and Technology,2011,3(1):429-434.
  • 3ENRIQUE J,SANCHEZ F,DIAZ J,et al.Background subtraction based on color and depth using active sensors[J].Sensors,2013,13(7):8895-8915.
  • 4THIND B T.Background subtraction techniques-review[J].International Journal of Innovative Technology and Exploring Engineering,2013,2(3):166-168.
  • 5LIAN Xiaofeng,ZHANG Tao,LIU Zaiwen.A novel method on moving-objects detection based on background subtraction and three frames differencing[C]//Proceedings of 2010 International Conference on Measuring Technology and Mechatronics Automation.Changsha,China:IEEE,2010:252-256.
  • 6薛丽霞,罗艳丽,王佐成.基于帧间差分的自适应运动目标检测方法[J].计算机应用研究,2011,28(4):1551-1552. 被引量:66
  • 7胥欣,江登表,李勃,陈启美.混合高斯模型运动检测算法优化[J].计算机应用研究,2013,30(7):2190-2194. 被引量:14
  • 8KIM K,CHALIDABHONGSE T H.Real-time foreground-background segmentation using codebook model[J].Real-Time Imaging,2005,11(3):172-185.
  • 9PATEL H A,THAKORE D G.Moving object tracking using Kalman filter[J].International Journal of Computer Science and Mobile Computing,2013,4(2):326-332.
  • 10KAUSHIK S.3D real-time tracking and recognization of moving object using Kalman filter[J].International Journal of Engineering Research,2013,2(7):438-441.

二级参考文献28

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2Brasnett P,Mihaylova L,Bull D,et al.Sequential Monte Carlo tracking by fusing multiple cues in video sequences[J].Image and Vision Computing,2007,25(8):1217-1227.
  • 3Zhou S K,Chellappa R,Moghaddam t.Visual tracking and recognition using appearance-adaptive models in particle filters[J].IEEE Trans.on Image Process,2004,13(11):1491-1506.
  • 4Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking[J].IEEE Transactions on Signal,2002,50(2):174-188.
  • 5Fox D.Adapting the sample size in particle filters through KLDsampling[J].The International Journal of Robotics Re-search,2003,22 (12):985-1003.
  • 6Pan P,Schonfeld D.Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking[J].IEEE Transaction on Circuits and Systems for Video Technology,2008,18(9):1268-1279.
  • 7TOYAMA K,KRUMM J,BRUMITT B. Wallflower:principles and practice of background maintenance[A].[S.l.]:IEEE Press,1999.255-261.
  • 8BRUTZER S,H?FERLIN B,HEIDEMANN G. Evaluation of background subtraction techniques for video surveillance[A].2011.1937-1944.
  • 9BARNICH O,Van DROOGENBROECK M. Vibe:a powerful random technique to estimate the background in video sequences[A].2009.945-948.
  • 10ASSHETON P,HUNTER A. A shape-based voting algorithm for pedestrian detection and tracking[J].Pattern Recognition,2011,(05):1106-1120.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部