期刊文献+

一种基于改进子空间划分的波段选择方法 被引量:10

A band selection method based on improved subspace partition
在线阅读 下载PDF
导出
摘要 高光谱图像具有光谱分辨率高、波段连续、数据量大、图谱合一等特点。然而较高的光谱分辨率会造成波段间相关性强,信息冗余多。所以如何从数百个高光谱波段中选出有利于识别或分类的波段组合成为了高光谱应用需要解决的问题。文章针对相邻波段间相关性较大的特点,提出一种改进的对波段相关矩阵进行全局搜索的子空间划分的波段选择方法。该方法克服了传统只利用相关向量对波段进行划分的缺陷,利用整个相关矩阵进行全局搜索划分,再在划分后的子空间内进行波段选择,从而降低了波段之间的相关性。文章最后使用上述方法对AVIRIS数据进行波段选择,并通过SVM方法对其进行地物分类,结果表明该方法较不进行子空间划分的波段选择方法有较高的分类精度。 Hyperspectral image has hundreds of successively narrow bands, which brings serious problems such as large correlation and redundant information. The selection of the optimal bands, which are suited for classification or recognition, has become a difficult work that needs to be overcome. In order to solve the problem of the large correlation among bands, a band selection method based on improved subspace partition through global search on correlation matrix was proposed. Through a global search, the band correlation matrix was divided into a series of subspace, from which the optimal bands were finally selected. The proposed method provides a band selection which has small correlation between each other. The result of an experiment which used Support Vector Machine (SVM) on an AVIRIS image shows that the proposed method is valid.
出处 《红外与激光工程》 EI CSCD 北大核心 2015年第10期3155-3160,共6页 Infrared and Laser Engineering
关键词 波段选择 高光谱图像 子空间划分 band selection hyperspectral image subspace partition
  • 相关文献

参考文献9

二级参考文献50

共引文献202

同被引文献84

引证文献10

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部