期刊文献+

平行板微管道内的Jeffrey流体的电磁流动

Electromagnetohydrodynamic(EMHD)Flow of the Jeffrey Fluid Through Microparallel Plates
在线阅读 下载PDF
导出
摘要 研究了平行板微管道内线性黏弹性流体的电磁流动,其中线性黏弹性流体的本构关系是由Jeffrey流体模型来描述的。利用分离变量法,在无滑移条件和滑移条件下,求解了线性化的非定常柯西动量方程和Jeffrey流体本构方程,给出了黏弹性Jeffrey流体速度的解析表达式。通过数值计算,分析了无量纲雷诺数Re、哈特曼数Ha、弛豫时间λ1ω和滞后时间λ2ω对速度剖面的影响。结果表明,无量纲滑移长度α增大了流体的速度振幅,滑移条件下流体的速度大于无滑移条件下流体的速度。此外,随着哈特曼数Ha的增加,速度先增加后减少;随着弛豫时间λ1ω的增加,速度也变得越来越大;随着雷诺数Re和滞后时间λ2ω的增加,速度变得越来越小。 The electromagnetohydrodynamic(EMHD)flow of the linear viscoelastic fluid in the microparallel plates was studied,the constitutive relationship of the linear viscoelastic fluid was described by the Jeffrey fluid model.Using the separation variable method,the linearized unsteady Cauchy momentum equation and Jeffrey fluid constitutive equation were solved under the no-slip and slip conditions.The analytical expression of the viscoelastic Jeffrey fluid velocity was presented.By numerical computations,the influences of the dimensionless Reynolds number Re,Hartmann number Ha,relaxation timeλ1ωand retardation timeλ2ωon the velocity profile were analyzed.The results show that the flow velocity amplitude increases due to the dimensionless slip lengthα,the fluid velocity under the slip condition is higher than that of the no-slip condition.Furthermore,with the increase of Ha,the velocity first increases and then decreases;with the increase of relaxation timeλ1ω,the velocity is getting bigger;with the increase of Re andλ2ω,the velocity is getting smaller.
出处 《微纳电子技术》 CAS 北大核心 2015年第10期639-648,共10页 Micronanoelectronic Technology
基金 国家自然科学基金面上项目(11472140) 非线性力学国家重点实验室开放基金资助项目 内蒙古自治区高等学校青年科技英才支持计划(NJYT-13-A02)
关键词 电磁流动 Jeffrey流体 无滑移和滑移条件 分离变量法 平行微管道 electromagnetohydrodynamic(EMHD)flow Jeffrey fluid no-slip and slip conditions separation variable method microparallel plate
  • 相关文献

参考文献41

  • 1BAYRAKTAR T, PIDUGU S B. Characterization of liquid flows in microfluidic systems [J]. International Journal of Heat and Mass Transfer, 2006, 49 (5/6) 815-824.
  • 2SQUIRES T M, QUAKE S R. Mierofluidics.. fluid physics at the nanoliter scale [J]. Reviews of Modern Physics, 2005, 77 (3) : 977- 1026.
  • 3STONE H A, STROOCK A D, AJDARI A. Engineering flows in small devices." mierofluidies toward a lab-on-a-chip [J]. Journal of Fluid Mechanics, 2[)04, 36 (1): 381-411.
  • 4DITTRICH P S, MANZ A. Lab-on-a-chip.. microfluidics in drug discovery [J]. Nature Reviews Drug Discovery, 2006, 5 (3) : 210- 218.
  • 5BEEBE D J, MENSING G A, WALKER G M. Physics and applications of mierofluidics in biology [J]. Annual Review of Biomedical Engineering, 2002, 4 (1) : 261 - 286.
  • 6晁侃,陈波,吴健康.微纳米通道电场调控电渗流研究及控制[J].微纳电子技术,2010,47(12):731-735. 被引量:1
  • 7姜洪源,杨胡坤,王扬.直流电渗流在微通道内的控制与仿真研究[J].微纳电子技术,2008,45(3):166-169. 被引量:3
  • 8JIAN Y J, YANG L G, LIU Q S. Time periodic electro-os- motic flow through a microannulus [J]. Physics of Fluids, 2010, 22 (4): 042001-1-042001-9.
  • 9段娟,朱庆勇.微管道内幂律流体周期性电渗流流场分析[J].微纳电子技术,2015,52(3):167-172. 被引量:1
  • 10SU J, JIAN Y J, CHANG L. Thermally fully developed electro- osmotic flow through a rectangular microchannel [J]. Inter- national Journal of Heat and Mass Transfer, 2012, 55 (21/ 22) : 6285 - 6290.

二级参考文献66

  • 1陈兢.ICP体硅深刻蚀中侧壁形貌控制的研究[J].中国机械工程,2005,16(z1):476-478. 被引量:12
  • 2聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究[J].分析化学,2004,32(8):988-992. 被引量:6
  • 3SZE A, ERICKSON D, REN L, et al. Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow [J]. J Colloid Interface Sci, 2003, 261 (2): 402-410.
  • 4SCHASFOORT R B M, SCHLAUTMANN S, HENDRIKSE J, et al. Field-effect flow control for microfabricated fluidic networks [J]. Science, 1999, 286 (5441): 942-945.
  • 5ZHEN Y, GARCIA A L, LOPEZ G P, et al. Electrokinetic transport and separations in fluidic nanoehannels [J]. Electrophoresis, 2007, 28 (4): 595 - 610.
  • 6SNIADECKI N J, LEE C S, SIVANESAN P, et al, Induced pressure pumping in polymer microchannels via field-effect flow control [J].Anal Chem, 2004, 76 (7) : 1942- 1947.
  • 7CHUN B, LADD A J. The electroviscous force between charged particles: beyond the thin-double-layer approxirnation [J]. J Colloid Interface Sci, 2004, 274 (2) : 687 - 694.
  • 8van der WOUDEN E J, HEUSER T, HERMES D C, et al Field-effect control of electro-osmotic flow in microfluidic net works [J]. Colloids and Surfaces: A, 2005, 267 (1/2/3) 110 - 116.
  • 9PETSEV D N. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes [J]. J Chem Phys, 2005, 123 (24):244907- 244919.
  • 10DAIGUJI H, YANG P D, MAJUMDAR A. Ion transport in nanofluidic channels [J]. Nanoletters, 2004, 4 (1) : 137- 142.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部