摘要
研究了平行板微管道内线性黏弹性流体的电磁流动,其中线性黏弹性流体的本构关系是由Jeffrey流体模型来描述的。利用分离变量法,在无滑移条件和滑移条件下,求解了线性化的非定常柯西动量方程和Jeffrey流体本构方程,给出了黏弹性Jeffrey流体速度的解析表达式。通过数值计算,分析了无量纲雷诺数Re、哈特曼数Ha、弛豫时间λ1ω和滞后时间λ2ω对速度剖面的影响。结果表明,无量纲滑移长度α增大了流体的速度振幅,滑移条件下流体的速度大于无滑移条件下流体的速度。此外,随着哈特曼数Ha的增加,速度先增加后减少;随着弛豫时间λ1ω的增加,速度也变得越来越大;随着雷诺数Re和滞后时间λ2ω的增加,速度变得越来越小。
The electromagnetohydrodynamic(EMHD)flow of the linear viscoelastic fluid in the microparallel plates was studied,the constitutive relationship of the linear viscoelastic fluid was described by the Jeffrey fluid model.Using the separation variable method,the linearized unsteady Cauchy momentum equation and Jeffrey fluid constitutive equation were solved under the no-slip and slip conditions.The analytical expression of the viscoelastic Jeffrey fluid velocity was presented.By numerical computations,the influences of the dimensionless Reynolds number Re,Hartmann number Ha,relaxation timeλ1ωand retardation timeλ2ωon the velocity profile were analyzed.The results show that the flow velocity amplitude increases due to the dimensionless slip lengthα,the fluid velocity under the slip condition is higher than that of the no-slip condition.Furthermore,with the increase of Ha,the velocity first increases and then decreases;with the increase of relaxation timeλ1ω,the velocity is getting bigger;with the increase of Re andλ2ω,the velocity is getting smaller.
出处
《微纳电子技术》
CAS
北大核心
2015年第10期639-648,共10页
Micronanoelectronic Technology
基金
国家自然科学基金面上项目(11472140)
非线性力学国家重点实验室开放基金资助项目
内蒙古自治区高等学校青年科技英才支持计划(NJYT-13-A02)
关键词
电磁流动
Jeffrey流体
无滑移和滑移条件
分离变量法
平行微管道
electromagnetohydrodynamic(EMHD)flow
Jeffrey fluid
no-slip and slip conditions
separation variable method
microparallel plate