期刊文献+

冗余字典的扰动压缩数据分离 被引量:2

Compressed Data Separation of Redundant Dictionaries of Perturbation
在线阅读 下载PDF
导出
摘要 在冗余字典满足相互一致性条件和完全扰动矩阵满足限制性同构条件下,基于l1-极小化方法,对压缩数据分离问题进行了研究,完美地重构了原始信号. Compressed data separation is one of the hot research theories of signal processing.Under the condition that the redundant dictionary satisfies a mutual coherence and the perturbation matrix satisfies a restricted isometry property,the authors of this paper research compressed data separation problems for L1-minimization method,and achieve the perfect reconstruction of the original signal.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第9期150-156,共7页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金(NO.61273020)
关键词 压缩数据分离 l1-极小化 相互一致性 限制性等容性质 紧框架 完全扰动 compressed data separation L1-minimization mutual coherence restricted isometry property(RIP) tight frame perturbation
  • 相关文献

参考文献17

  • 1NYQUIST H. Certain Topics in Telegraph Transmission Theory [J]. American Institute of Electrical Engineers, 1928,47(2): 617-644.
  • 2CANDES E, ROMBERG J,TAO T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incom-plete Frequency Information [J]. IEEE Transactions on Information Theory, 2006,52(2) : 489 - 509.
  • 3DONOHO D. Compressed Sensing [J]. IEEE Transactions on Information Theory, 2006,52(4) : 1289 -1306.
  • 4BARANIUK R G. Single-Pixel Imaging via Compressive Sampling [J], IEEE Siganl Processing Magazine, 2008,25(2):83 - 91.
  • 5LUSTIG M, DONOHO D,PAULY J M. Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging[J]. Magnetic Resonance in Medicine, 2007,58(6) : 1182 - 1195.
  • 6王文东,王尧,王建军.一类光滑加权块l_1算法的收敛性分析与数值仿真实验[J].西南大学学报(自然科学版),2014,36(5):72-77. 被引量:3
  • 7WRIGHT J,YANG A Y,GANESH A,et al. Robust Face Recognition via Sparse Representation [J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence,2009,31(2) : 210 - 227.
  • 8MAJUMDAR A,WARD R. Compressed Sensing of Color Images [J]. Signal Processing, 2010,90(12) : 3122 - 3127.
  • 9CHEN S,DONOHO D L,SAUNDERS M A. Atomic Decomposition by Basis Pursuit [J]. SIAM J Sci Comp, 1999,20(1): 33 - 61.
  • 10BRUCKSTEIN A M,DONOHO D L,ELAD M. From Sparse Solutions of Systems of Eqnarrays to Sparse Modeling ofSignals and Images [J], SIAM Rev, 2009,51: 34 - 81.

二级参考文献12

  • 1BARANIUK R.Compressive Sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 2BRUCKSTEIN A M,DONOHO D L,ELAD M.From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images[J].SIAM Review,2009,51(1):34-81.
  • 3CHEN S,DONOHO D,SAUNDERS M A.Atomic Decomposition by Basis Pursuit[J].SIAM J.Sci Comp,1999,20(1):33-61.
  • 4MAJUMDAR A,WARD R.Compressed Sensing of Color Images [J].Signal Processing,2010,90(12):3122-3127.
  • 5PARVARESH F,VIKALO H,MISRA S,et al.Recovering Sparse Signals Using Sparse Measurement Matrices in Compressed DNA Microarrays[J].IEEE Journal of Selected Topics in Signal Processing,2008,2(3):275-285.
  • 6MALIOUTOV D,CETIN M,WILLSKY A.A Sparse Signal Reconstruction Perspective for Source Localization with Sensor Arrays,Signal Processing[J].IEEE Transactions on,2005,53(8):3010-3022.
  • 7WANG Y,XU Z B,WANG J J.On Recovery of Block-sparse Signals via Mixed l2/lq(0<q≤1)Norm Minimization [J],EURASIP Journal on Advances in Signal Processing,2013,2013:76.
  • 8ELDAR Y,MISHALI M.Robust Recovery of Signals From a Structured Union of Subspaces[J],IEEE Trans.Inf.Theory,2009,55(11):5302_5316.
  • 9LAI M J,XU Y Y,YIN W T.Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed lq Minimiza- tion[J].SIAM Journal on Numerical Analysis,2013,51(2):927-957.
  • 10CANDES E, ROMBERG J.[CP/OL].[2013-02-10].http;//www-stat.Stanford,edu/candes/11 magic/.

共引文献2

同被引文献2

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部