摘要
在冗余字典满足相互一致性条件和完全扰动矩阵满足限制性同构条件下,基于l1-极小化方法,对压缩数据分离问题进行了研究,完美地重构了原始信号.
Compressed data separation is one of the hot research theories of signal processing.Under the condition that the redundant dictionary satisfies a mutual coherence and the perturbation matrix satisfies a restricted isometry property,the authors of this paper research compressed data separation problems for L1-minimization method,and achieve the perfect reconstruction of the original signal.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第9期150-156,共7页
Journal of Southwest University(Natural Science Edition)
基金
国家自然科学基金(NO.61273020)
关键词
压缩数据分离
l1-极小化
相互一致性
限制性等容性质
紧框架
完全扰动
compressed data separation
L1-minimization
mutual coherence
restricted isometry property(RIP)
tight frame
perturbation