期刊文献+

实心圆轴拉扭组合全寿命实验中应力按比例加载的控制方法

Control Methods of Cylindrical Shaft Tension-torsion Test under Fixed Proportional Loading in Life Cycle
在线阅读 下载PDF
导出
摘要 针对实心圆轴拉、扭组合实验全寿命过程中拉(σ)、扭(τ)应力按固定比例加载的难题,基于拉扭试验机控制的核心问题,从弹性应力比C(σ/τ)的概念出发,推导出载荷比F/T(轴力/扭矩)控制参数,同时考虑全寿命中的拉扭真应力关系,给出载荷程序控制路线,应用PID方式实现试验机控制。以304不锈钢及16MnR碳钢为研究对象,进行了24组不同C的拉扭实验。在此基础上,以塑性过程中的真应力比槇C(σ/τ)为依据,提出了比例修正系数C'的概念,解决了试验机在全过程的控制问题。结果表明:以C为基础的控制模式可对弹性阶段精确控制;材料进入塑性后,C的差异与材料无关,仅与控制方法有关;将提出的C引入控制程序后,可有效提高全寿命过程中应力按比例加载的准确性。 To investigate how to realize the fixed proportional tension-torsion loading test in the life cycle of solid cylindrical shaft,the route of loading control is based on the theory of elastic stress ratio[C( σ / τ) ]with the consideration of true stress and strain,the PID control method is used in the tension-torsional testing machine. 24 series of experiment has been done in different C with 24 specimens of 16 MnR and 304 stainless steel. A ratio correction coefficient( C') is put forward depend on the true stress strain ratio C( σ / τ) and experiment results. The results show that: the control route based on C is accurate when the specimen in elastic phase. The difference of C between 16 MnR and 304 SS is related to control method,but not related to specimen when the material gets to large plastic deformation. The accuracy of the fixed proportional tension-torsion loading test in the life cycle was increased when the C'is applied to control procedure.
出处 《科学技术与工程》 北大核心 2015年第29期1-6,共6页 Science Technology and Engineering
基金 国家科技支撑计划(2011BAK06B02)资助
关键词 拉扭实验 比例加载 全寿命过程 拉扭试验机控制 16MnR和304 tension-torsion experiment proportion loading life cycle control route 16MnR and 304
  • 相关文献

参考文献15

  • 1Faleskog J, Barsoum I. Tension-torsion fracture experiments part I: experiments and a procedure to evaluate the equivalent plastic strain. International Journal of Solids and Structures, 2013 ; 50 ( 25- 26) :4241 --4257.
  • 2Padmanabhan R, Zarroug N M, MacDonald B J,et al. A novel adap- tive control system for a custom-built tension-torsion machine. Ad- vances in Engineering Software ,2005 ;36(3 ) : 137-146.
  • 3Li J H, Li F G, Hussain M Z, et al. Micro-structural evolution sub- jeered to combined tension-torsion deformation for pure copper, Mate- rials Science & Engineering A, 2014; 610:181-187.
  • 4Leetez A S, Verron E, Huneau B. How to identify a hyperelastie con- stitutive equation for rubber-like materials with multiaxial tension-tor- sion experiments. International Journal of Non-linear Mechanics, 2014; 65:260-270.
  • 5胡桂娟,张克实,石艳柯,苏莉.多晶Cu屈服及后继屈服拉扭实验的晶体塑性数值分析[J].金属学报,2010,46(4):466-472. 被引量:3
  • 6雒设计,赵康,王荣.S135钻杆钢的拉扭复合加载疲劳行为[J].材料工程,2013,41(1):40-44. 被引量:7
  • 7Chandra D. Fatigue crack growth of a corner crack in a square pris- matic bar under combined cyclic torsion-tension loading. International Journal of Fatigue, 2014; 64:67-73.
  • 8Zhang Jianyu. Tension-torsion high-cycle fatigue failure analysis of 2A12-T4 aluminum alloy with different stress ratios. International Journal of Fatigue, 2011 ;33 ( 8 ) : 1066-1074.
  • 9Arnaud N, Cr6acOhcadee R, Cognard J Y. A tension/compression- torsion test suited to analyze the mechanical behavior of adhesives un- der non-proportional loadings. International Journal of Adhesion and Adhesives ,2014 ;53:3-14.
  • 10刘世民,艾素华,王中光.LY12铝合金的拉扭复合加载疲劳[J].航空材料学报,2006,26(5):96-100. 被引量:12

二级参考文献58

共引文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部