期刊文献+

The Degenerate Form of the Adomian Polynomials in the Power Series Method for Nonlinear Ordinary Differential Equations 被引量:2

The Degenerate Form of the Adomian Polynomials in the Power Series Method for Nonlinear Ordinary Differential Equations
在线阅读 下载PDF
导出
摘要 In this paper, we propose a new variation of the Adomian polynomials, which we call the degenerate Adomian polynomials, for the power series solutions of nonlinear ordinary differential equations with nonseparable nonlinearities. We establish efficient algorithms for the degenerate Adomian polynomials. Next we compare the results by the Adomian decomposition method using the classic Adomian polynomials with the results by the Rach-Adomian-Meyers modified decomposition method incorporating the degenerate Adomian polynomials, which itself has been shown to be a confluence of the Adomian decomposition method and the power series method. Convergence acceleration techniques including the diagonal Pade approximants are considered, and new numeric algorithms for the multistage decomposition are deduced using the degenerate Adomian polynomials. Our new technique provides a significant advantage for automated calculations when computing the power series form of the solution for nonlinear ordinary differential equations. Several expository examples are investigated to demonstrate its reliability and efficiency.
出处 《Journal of Mathematics and System Science》 2015年第10期411-428,共18页 数学和系统科学(英文版)
关键词 Power series method Adomian decomposition method Adomian polynomials Modified decomposition method Nonlinear differential equation Adomian多项式 非线性常微分方程 退化形式 Adomian分解法 级数解法 Pade逼近 幂级数解 数值算法
  • 相关文献

参考文献58

  • 1G. E. O. Giacaglia. Perturbation methods in non-linear systems. Springer-Verlag, New York, 1972.
  • 2G. Adomian. Stochastic Systems. Academic, New York, 1983.
  • 3G. Adomian and R. Rach. Inversion of nonlinear stochastic operators. J. Math. Anal. Appl., 91:39-46, 1983.
  • 4S. J. Liao. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC Press, Boca Raton, 2004.
  • 5S. Liao. Homotopy Analysis Method in Nonlinear Differential Equations. Higher Education Press, Beijing, and Springer-Verlag, Berlin, 2012.
  • 6J. H. He. Variational iteration method for autonomous ordinary differential systems. Appl. Math. Comput., 114(2/3): 115-123, 2000.
  • 7A. Yildirim and T. "'Ozis. Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. Phys. Lett. A, 369:70-76, 2007.
  • 8H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, and C. M. Khalique. Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl., 62:1038-1045, 2011.
  • 9L. N. Trefethen. Spectral Methods in MATLAB. SIAM, Philadelphia, 2000.
  • 10G. Adomian. Nonlinear Stochastic Operator Equations. Academic, Orlando, FL, 1986.

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部