期刊文献+

一种基于参数重估计和分层匹配的PTZ相机参数修正算法

A parameter correction algorithm for PTZ camera based on parameter refinement strategy and hierarchical feature matching
原文传递
导出
摘要 由于多种因素的影响,PTZ(pan-tilt-zoom)相机经过长时间运行后其参数会偏离真实值,因此有必要对相机参数进行修正。针对现有算法参数修正精度低、适应能力弱等问题,提出了一种改进的基于参数重估计和分层匹配的参数修正算法。算法通过引入参数重估计策略,避免了参数修正过程中的误差累积,提高了参数修正的精度;通过设计分层匹配和特征传播步骤,增强了算法对不同尺度图像的适应性。实际场景中的多组实验结果表明,本文算法可以准确修正PTZ相机参数,并且较现有方法更具优越性。 Most modern surveillance systems make use of pan-tilt-zoom (PTZ) cameras. However, due to the influence of many factors,the (pan and tilt) coordinates reported by the PTZ cameras become inac- curate after many hours of operation. As the existing parameter correction method is not adaptable e- nough for large scale images and provides results with low accuracy, a parameter correction algorithm based on parameter refinement strategy and hierarchical feature matching is presented in this paper. In the offline stage,the parameter refinement strategy is introduced to compute the pose angle of each 3D point in the surveillance scene, which can effectively improve the accuracy of parameter correction. In the online stage, a hierarchical matching and correspondence propagation method is designed to generate pairwise correspondence between observed image and pose angle set, which can effectively improve the a- daptive capacity of parameter correction algorithm for different scale images. Experimental results dem- onstrate that the proposed method can accurately correct the parameters of the PTZ camera, and it has better accuracy compared with the classical method.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2015年第10期1997-2007,共11页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61021063 61225008)资助项目
关键词 PTZ相机 参数修正 参数重估计 分层匹配 特征传播 (pan-tilt-zoom) PTZ camera parameter correctiom parameter refinement strategy hierar-chical feature matching correspondence propagation
  • 相关文献

参考文献17

  • 1Micheloni C, Rinner B, Foresti G. Video analysis in pan- tilt-zoom camera networks [ J]. IEEE Signal Processing Magazine, 2010,27(5) : 78-90.
  • 2Kim S,Yun K, Yi K, et al. Detection of moving objects with a moving camera using non-panoramic background model[J]. Machine Vision and Application, 2013, 24 (5) :I015-i028.
  • 3Ferone A, Maddalena L. Neural background subtraction for pan-tilt-zoom camerasEJ]. IEEE Transactions on Sys- tems, Man and Cybernetics= Systems, 2014, 44 ( 5 ) : 571-579.
  • 4崔智高,李艾华,冯国彦.采用多组单应约束和马尔可夫随机场的运动目标检测算法[J].计算机辅助设计与图形学学报,2015,27(4):621-632. 被引量:6
  • 5Varcheie P, Bilodeau G. People tracking using a network- based PTZ camerarJ:. Machine Vision and Application, 2011,22(4) :671-690.
  • 6Cui Z G, Li A H, Feng G Y, et al. Cooperative object tracking using dual-pan-tilt-zoom cameras based on pla- nar ground assumptionr-J:, lET Computer Vision, 2015,9 (1) :149-161.
  • 7崔智高,李艾华,苏延召,金广智.大视场双目主动视觉传感器的协同跟踪方法[J].光电子.激光,2014,25(4):784-791. 被引量:3
  • 8Wan D, Zhou J. A spherical rectification for duaI-PTZ-camera system[A:. Prec. of IEEE International Confer- ence on Acoustics, Speech and Signal Processing[C]. 2007,777-780.
  • 9Wan D, Zhou J. Stereo vision using two PTZ cameras [J]. Computer Vision and Image Understanding, 2008, 112(2) :184-194.
  • 10Schoepflin T, Dailey D. Dynamic camera calibration of road-side traffic management cameras for vehicle speed estimation[J-I. IEEE Transactions on Intelligent Trans- portation Systems, 2003,4 ( 2 ) : 90-98.

二级参考文献36

  • 1Kim I l H S,Yi K M,et at. fiitetHgent visuallanca survey [J], Jntmattoal Mmmt ConlrokA咖-nation and Systems,2010,8(5) r926-939.
  • 2htej M A,Fernandez C,Xiong Z W et ai.yond the staticcamera: issues and trench in active vision[M]. LonctorUK :Springer-Veriag London UmiWUOll ,11月30日.
  • 3J S,Su T M.Robust environiffent ctuige detection u-sing PTZ camera via spatial-tempcral probabilistic mod-eling [J]. IEEE/ASME Transart m Mediatrcmjc.2007,12(3):339-344.
  • 4Kim S W,Yun K, Yi K M.et at, Detection of moving cfe-jects with a moving camera using non-panoramic back-ground model [J]. Machine Vision and Application,2013,24(5).-1015-1028.
  • 5HalM A, Bagdanov A D,Gonzalez J,et al. Reactive ob-ject tracking with a single PTZ camera [A]. InternationalConference on Pattern Recognition[C] .2010,1690-1693.
  • 6Varcheie P D Z,Bilodeau G A. Adaptive fuzzy particle fil-ter tracker for a PTZ camera in an IP surveillance system[J]. IEEE Transactions on Instrumentation and Measure-ment,2011,60(2) ;354-371.
  • 7Wang X G. Intelligent multi-camera video surveillance: areview[J]. Pattern Recognition Letters,2013,34 (1): 3-19.
  • 8Park U,Choi H,Jain A K,et al. Face tracking and recog-nition at a distance:a coaxial & concentric PTZ camerasystem [J]. IEEE Transactions on Information Forensicsand Security,2013,8(10) :1665-1677.
  • 9Bimbo A D,Dini F,Lisanti G,et al. Exploiting distinctivevisual landmark maps in pan-tilt-zoom camera networks[J]. Computer Vision and ImageUnderstanding,2010,114(6):611-623.
  • 10Tarhan M,Altug E.A catadioptric and pan-tilt-zoom cam-era pair object tracking system for UAVs[J]. Journal ofIntelligent & Robotic Systems,2011,61(1):119-134.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部