期刊文献+

面部表情识别中基于TTL的特定个体学习模型

Application of Specific Person Learning Model Based on TTL in Facial Expression Recognition
在线阅读 下载PDF
导出
摘要 针对现实生活中采集的特定个体数据稀疏而导致学习时产生过拟合的问题,提出了一种基于迁移学习的特定个体学习模型。首先,利用直推式迁移学习从源数据提取有用信息并将其添加到目标数据;然后,利用核主成分分析进行特征提取;最后,将各个样本建模为流形,并利用稀疏系数重建和k近邻分类器完成识别。在PAINFUL数据库上的实验结果表明,所提模型在痛苦表情上的识别精度可高达96.29%,ROC下方面积可高达0.904,相比其他几种较新的模型,所提模型取得了更好的识别性能。 For the issue that specific person data searched from real - world is sparse which will cause fitting problem in learning, a specific person learning model based on transductive transfer learning (TTL) is proposed. Firstly, TTL learning is used to extract useful information from original data and add them into objective data. Then, KPCA is used to extract feature. Finally, all the samples are modeled be manifolds, sparse coefficient reconstruction and k neighbor classifier is used to finish face recognition. Experimental results show that the recognition accuracy of proposed model can arrive at 96.29% and the AUC of ROC can arrive at 0.904. Proposed model has better recognition performance than several other advanced models.
出处 《电视技术》 北大核心 2015年第21期99-103,共5页 Video Engineering
基金 国家自然科学基金项目(61103143) 河南省科技厅科技发展计划项目(134300510037) 平顶山学院青年科研基金项目(PDSU-QNJJ-2013010)
关键词 直推式迁移学习 面部表情识别 核主成分分析 特定个体学习 稀疏系数重建 transductive transfer learning facial expression recognition kernel principal component analysis specific person learning sparse coefficient reconstruction
  • 相关文献

参考文献15

  • 1刘帅师,田彦涛,万川.基于Gabor多方向特征融合与分块直方图的人脸表情识别方法[J].自动化学报,2011,37(12):1455-1463. 被引量:76
  • 2VAN IJZENDOORN M H, BAKERMANS-KRANENBURG M J. A sniff of trust : meta-analysis of the effects of intranasal oxytocin ad- ministration on face recognition ,trust to in-group, and trust to out- group[J] ,2012,37(3) :438---443.
  • 3李雅倩,李颖杰,李海滨,张强,张文明.融合全局与局部多样性特征的人脸表情识别[J].光学学报,2014,34(5):164-170. 被引量:29
  • 4PHILLIPS P J, GROTHER P, MICHEALS R. Evaluation methods in face recognition[ M]. London:Springer,2011.
  • 5QIAO L,CHEN S,TAN X. Sparsity preserving projections with ap- plications to face recognition [ J ]. Pattern Recognition, 2010,43 ( 1 ) :331-341.
  • 6LUCEY P, COHN l F, MATFHEWS I, et al. Automatically detecting pain in video through facial action units[J]. IEEE Trans. Systems, Man, and Cybernetics, Part B : Cybernetics,2011,41 ( 3 ) :664-674.
  • 7杨凡,张磊.基于Gabor参数矩阵与改进Adaboost的人脸表情识别[J].计算机应用,2014,34(4):1134-1138. 被引量:10
  • 8于重重,田蕊,谭励,涂序彦.非平衡样本分类的集成迁移学习算法[J].电子学报,2012,40(7):1358-1363. 被引量:27
  • 9TONG A, PRZYBOCKI M, MARGNER V,et al. NIST 2013 open handwriting recognition and translation( Open HART13 ) evaluation[ C ]//Proc. 2014 11 th IAPR International Workshop on Document Analysis Systems (DAS). [ S. 1. ] : IEEE Press,2014:81-85.
  • 10ZHUANG F,LUO P,DU C,et al. Triplex transfer learning: exploi- ting both shared and distinct concepts for text classification [ C ]// Proc. sixth ACM international conference on Web search and data mining. [ S. 1. ] :ACM Press,2013:425-.434.

二级参考文献67

  • 1柴秀娟,山世光,卿来云,陈熙霖,高文.基于3D人脸重建的光照、姿态不变人脸识别[J].软件学报,2006,17(3):525-534. 被引量:54
  • 2宋枫溪,杨静宇,刘树海,张大鹏.基于多类最大散度差的人脸表示方法[J].自动化学报,2006,32(3):378-385. 被引量:17
  • 3朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 4刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 5刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 6L Rigutini, M Maggini, B Liu. An EM based training algorithm for cross-language text categorization [ A ]. IEEE International Conference on Web Intelligence[ C ]. University of Technology of Compiegne, France,2005.282- 287.
  • 7W Dai,Q Yang, G-R Xue,Y Yu. Boosting for transfer learning A ]. Proceedings of the Twenty-Fourth International Conference on Machine Learning[C]. Orvallis, Oregon, USA, 2007. 193 - 200.
  • 8W Dai, Y Chen, G-R Xue, Q Yang, Y Yu. Translated learning: Transfer learning across different feature spaces[A]. Advances in Neural Information Processing Systems 21 [C]. Vancouver, British Columbia, Canada, 2009.786 - 791.
  • 9Y Liu,P Stone. Value-function-based transfer for reinforcement learning using structure map-ping [ A ]. Proceedings of the Twenty-First National Conference on Artificial Intelligence [ C]. Boston, Massachusetts, 2006.877 - 882.
  • 10Sinno J Pan, Qiang Yang. A survey on transfer learning[ A ]. IEEE Transactions on Knowledge and Data Engineering [ C ]. Los Alamitos, CA, USA, 2009.556 - 562.

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部