期刊文献+

运动神经假体康复技术回顾与展望 被引量:5

Rehabilitation Technology with Motor Neuroprosthesis:Review and Outlook
在线阅读 下载PDF
导出
摘要 运动神经假体是一类帮助神经系统受损患者恢复或替代其身体运动功能的电子装置,通过功能性电刺激(FES)技术代替大脑发出神经控制命令来激励相关肌肉活动、驱动受损肢体或直接控制人工假体完成预期动作,达到恢复或替代肢体运动功能目的.另外,脑-机接口(BCI)技术也是运动神经假体系统中的关键组成部分,它通过提取与解码大脑神经活动实现人脑与神经假体之间的交互.目前,随着FES技术以及BCI技术的高速发展,运动神经假体系统已经在脊髓损伤和中风患者的康复和功能辅助方面得到了广泛的临床应用,现阶段的研究热点在于如何开发更加有效的神经译码技术,提取出更丰富的大脑指令信息,使患者可以控制神经假体完成复杂的运动功能来满足日常活动的需要.未来,运动神经假体系统将向着便携化、网络化和更加逼近自然肢体功能的方向发展.本文主要介绍运动神经假体系统的组成和应用,综述运动神经假体康复技术的发展历程与现状,以期为神经损伤患者及从事神经假体技术研究的科研人员提供参考和帮助. Motor neuroprosthesis is a kind of electronic device intending to help patients with injured nerv-ous systems to restore or substitute for their motor function.It can use functional electrical stimulation ( FES) instead of electrophysiological signals to activate muscles and control artificial prosthesis to drive limbs to achieve expected movements, so as to recover or substitute motor function of limbs.In addition, the brain-computer interface (BCI) technology is a key part of the motor neuoprosthesis system.It extracts and decodes brain activity to achieve the interaction between human brain and neuroprosthesis.Now, with the rapid development of FES technology and BCI technology, motor neuroprosthesis system has been wide-ly applied in clinical rehabilitation and functional assistance of spinal cord injury and stroke patients.At this stage, the research focus is on developing more effective neural decoding techniques to extract more ex-tensive brain instruction information, so that patients can control neuroprosthesis to carry out complex mo-tion functions to meet daily needs.In the future, motor neuroprosthesis system will be more portable, more network-oriented and more natural limb function approximated.This paper reviewed the development and current situation of motor neuroprosthesis system, from the aspects of structure and classification in hope of providing reference for nerve injury patients and researchers who are engaged in neuroprosthesis technology.
出处 《纳米技术与精密工程》 CAS CSCD 北大核心 2015年第6期404-413,共10页 Nanotechnology and Precision Engineering
基金 国家自然科学基金资助项目(81222021 31271062 61172008 81171423 51007063) 国家科技支撑计划资助项目(2012BAI34B02) 教育部新世纪优秀人才支持计划资助项目(NCET-10-0618)
关键词 运动神经假体 功能替代 功能重建 功能性电刺激 脑-机接口 motor neuroprosthesis functional substitutes functional reconstruction functional electrical stimulation brain-computer interface
  • 相关文献

参考文献51

  • 1Kafri M, Laufer Y. Therapeutic effects of functional electri- cal stimulation on gait in individuals post-stroke[J]. Annals of Biomedical Engineering, 2015,43 : 451-466.
  • 2Gilja V, Chestek C A, Diester I, et al. Challenges and op- portunities for next-generation intracortically based neural prostheses[J]. IEEE Transactions on Biomedical Engineer- ing, 2011, 58(7): 1891-1899.
  • 3Shenoy K V, Kaufman M T, Sahani M, et al. A dynamical systems view of motor preparation: Implications for neural prosthetic system design [ J]. Progress in Brain Research, 2011, 192: 33-58.
  • 4Olds J, Milner P. Positive reinforcement produced by elec- trical stimulation of scptal area and other regions of rat brain [J]. Journal of Comparative and Physiological Psychology, 1954, 47(6) : 419-427.
  • 5Djourno A, Eyries C. Auditory prosthesis by means of a dis- tant electrical stimulation of the sensory nerve with the use of an indwelt coiling [J]. La Presse Medicale, 1957, 65(63) : 1417.
  • 6Liherson W T, Holmquest H J, Scot D, et al. Functional electrotherapy: Stimulation of the peroneal nerve synchro- nized with the swing phase of the gait of hemiplegie patients [ J ]. Archives of Physical Medicine and Rehabilitation, 1961, 42 : 101-105.
  • 7Mikosajewska E, Mikotajewski D. Neuroprostheses for in- creasing disabled patients mobility and control [ J ]. Adv Clin Exp Med, 2012, 21 (2) : 263-272.
  • 8Chen C C, He Z C, Hsueh Y H. An EMG feedback control functional electrical stimulation cycling system [ J]. Journal of Signal Processing Systems, 2011, 64(2) : 195-203.
  • 9Popovic M R, Popovic D B, Keller T. Neuroprostheses for grasping [ J ]. Neurological Research, 2002, 24 ( 5 ) : 443- 452.
  • 10Sinkjaer T, Haugland M, Inmann A, et al. Biopotentials as command and feedback signals in functional electrical stimu- lation systems [ J ]. Medical Engineering & Physics, 2003, 25(1) : 29-40.

二级参考文献105

  • 1万柏坤,李佳,明东.用于肢体运动系统的神经假体研究进展[J].中国医疗器械杂志,2006,30(4):235-240. 被引量:6
  • 2宁新宝.生物医学电子学[M].长沙:湖南科学技术出版社,1985..
  • 3陈西文.I/O接口程序设计入门与应用[M].北京:机械工业出版社,1995..
  • 4M.R. Popovic, et al. Grasping and walking neuroprostheses for stroke and spinal cord injured subjects. IEEE. 1999, 2: 1243-1247.
  • 5Kobetic R, et al. Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up, case report. IEEE Trans Rehabil Eng. 1997, 7: 390-398.
  • 6Kigore KL, et al. Neuroprostheses consumer' s forum: consumer priorities for research directions. J Rehabil Res Dev. 2001, 38: 655-660.
  • 7Popovic MR, et al. Functional electrical stimulation for grasping and walking:indications and limitations. Spinal Cord. 2001.39: 403-412.
  • 8Ijzerman M, et al. The NESS bandmaster orthosis: Restoration of hand function in C5 and stroke patients by means of electrical stimulation. J Rehab Sci.1996, 9: 86-89.
  • 9Prochazka A, et al. The Bionic Glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch Physical Med and Rehab. 1997, 78: 1-7.
  • 10Popovic D., et al. Clinical evaluation of the BionicGlove. Arch. Phys. Med.Rehabil. 1999. 80: 299-304.

共引文献20

同被引文献64

引证文献5

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部