期刊文献+

大数据时代下程序化交易研究现状及风险监测方案探讨 被引量:3

Research on Study of the Current Situation and Risk Monitoring Scheme of Program Trading in the Era of Big Data
在线阅读 下载PDF
导出
摘要 近年来,大数据在各行业开始得到充分重视,以高频数据为基础的程序化交易不仅在海外市场蓬勃发展,在国内市场也悄然兴起,日益成为各方关注的热点。伴随着美国股市"闪电崩盘"、国内"816光大事件"等风险事件的发生,程序化交易的利弊也成为各方热议焦点。文章从程序化交易的数据基础、数据模型、风险管理出发,对国内外学术界关于程序化交易的理论和实证研究进行梳理,同时针对程序化交易引发的系统性风险提出了两种监测方案,以期为我国证券市场的程序化交易监管提供参考。 In recent years, big data has been got the full attention in various fields. The program trading which is based on high frequency data flourishes both in overseas and domestic markets, which has become a hot spot of concern to interested parties. When the occurrence of risk events such as the U.S. stock market 'flash crash' and the China '816' events, it has also become a hot focus. In this paper, we start from the data base, data model, risk management of program trading, introduce the theoretic and empirical research of the domestic and foreign academic circles about program trading, at the same time we put forward two methods to monitor systemic risk caused by program trading. We hope to provide some reference for regulating program trading in China securities market.
作者 刘伟
出处 《当代经济管理》 CSSCI 2015年第12期65-68,共4页 Contemporary Economic Management
基金 国家自然科学基金青年项目(71401105) 上海市自然科学基金面上项目(13ZR1427200) 上海市教委科研创新项目(13YZ126 13ZS144) 上海金融学院2014年青年教师科研资助计划
关键词 程序化交易 系统性风险 风险监管 programt rading systemic risk risk regulation
  • 相关文献

参考文献20

  • 1Robert.Wood: Market Microstructure Research Databases: Historyand Projections [J]. Journal of Business & Economic Statistics,2000,18(2): 140-145.
  • 2Joel Hasbrouck: The Dynamics of Discrete Bid and Ask Quotes [J].Journal of Finance,1999,54(6): 2109-2142.
  • 3Zhang,M.Y.,Russell,J.R.,Tsay,R.S.:A Nonlinear AutoregressiveConditional Duration Model with Applications to FinancialTransaction Data[J]. Journal of Econometrics ,2001,104(1):179-207.
  • 4Cho,D.,Russell,J.R.,Tiao,G.C.,Tsay,R.S. 2003:The Magnet Ef-fect of Price Limits: Evidence form High Frequency Data on Tai-wan Stock Exchange[J]. Journal of Empirical Finance,2003,10(1-2): 133-168.
  • 5朱建平,魏瑾,谢邦昌.金融高频数据挖掘研究评述与展望[J].经济学动态,2011(6):59-62. 被引量:7
  • 6Hauseman,J.,Lo,A.,MacKinlay,C. An Ordered Probit Analysis ofTransaction Stock Prices[J]. Journal of Financial Economics,1992,31(3):319-379.
  • 7Rydberg,T.H.,Shephard,N. Dynamics of Trade by -trade PriceMovements: Decomposition and Models [J]. Journal of Financial E-conometrics,2003,1(1): 2-25.
  • 8郭名媛,张世英.基于高频金融数据的正交ARFIMA模型及应用[J].系统工程理论与实践,2008,28(11):74-79. 被引量:5
  • 9Engle,R.F.,Russell,J.R.Autoregressive Conditional Duration: ANew Model for Irregularly Spaced Transaction Data [J]. Economet-rica,1998,66(5): 1127-1162.
  • 10徐国祥,金登贵.基于金融高频数据的ACD模型非参数设定检验[J].统计研究,2007,24(4):15-18. 被引量:9

二级参考文献60

共引文献41

同被引文献31

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部