期刊文献+

基于TF-IDF改进聚类算法的网络敏感信息挖掘 被引量:6

Objectionable internet information excavation performed by improved clustering algorithm based on TF-IDF
在线阅读 下载PDF
导出
摘要 网络敏感信息挖掘过程中,敏感信息和正常信息的特征不同,具有较高的遮蔽性。利用传统敏感信息挖掘方法时,固有的敏感信息被遮蔽,无法进行敏感信息的准确挖掘。提出基于TF-IDF改进聚类算法的网络敏感信息挖掘方法,通过TF-IDF方法获取网络敏感信息文本,在网络敏感信息文本中获取有价值的敏感信息特征,采用该信息完成聚类算法,对全部敏感信息特征进行聚类分析,完成网络敏感信息的挖掘。实验结果说明,所提方法进行网络敏感信息挖掘,具有较高的挖掘效率和精度。 In the mining process of objectionable Internet information,the sensitive information is different from normal information and has high shadowing property. When the traditional method is taken to excavate the sensitive information,the sensitive information can not be mined accurately because the inherent sensitive information is obscured. The objectionable Internet information excavation algorithm is proposed,in which clustering algorithm is improved on the basis of TF-IDF. It uses TF-IDF algorithm to obtain objectionable Internet informative text,in which valuable features of the sensitive information are got. This information is used to complete the clustering algorithm,and all the sensitive information features are clustered and analyzed,so that the network sensitive information is mined completely. The experimental results show that the proposed method has high efficiency and precision for objectionable network information excavation.
出处 《现代电子技术》 北大核心 2015年第24期44-46,49,共4页 Modern Electronics Technique
基金 2015年河南省高等学校重点科研项目:基于数据挖掘的反恐情报分析技术研究(15B520027) 2015年河南省高等学校重点科研项目:基于大数据的公安信息化应用技术研究(15A120014)
关键词 TF-IDF 聚类分析 网络敏感信息 信息挖掘 TF-IDF clustering analysis sensitive network information information mining
  • 相关文献

参考文献9

  • 1WANG X B, FU M Y, ZHANG H S, et al. Target tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements [J]. IEEE Transactions on Mobile Computing, 2012, 11(4): 567-576.
  • 2EKANAYAKE J, LI H, ZHANG B, ET AL. Twister: a run- time for iterative MapReduce [C] // Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing. ACM: [s.n.], 2013: 810-818.
  • 3HE B, FANG W, LUO Q, et al. Mars: a MapReduce frame- work on graphics processors [C]//Proceedings of the 17th inter- national conference on Parallel architectures and compilation techniques. ACM: [s.n.], 2014: 260-269.
  • 4章武媚,陈庆章.引入偏移量递阶控制的网络入侵HHT检测算法[J].计算机科学,2014,41(12):107-111. 被引量:40
  • 5亢丽芸,王效岳,白如江.MapReduce原理及其主要实现平台分析[J].现代图书情报技术,2012(2):60-67. 被引量:17
  • 6肖金超,曾鹏,何杰,于海斌.基于传感器网络的多信道定位技术[J].信息与控制,2015,44(3):346-352. 被引量:5
  • 7THUSOO A, SARMA J S, JAIN N, et al. Hive: a warehousing solution over a map-reduce framework [J]. Proceedings of the VLDB Endowment, 2013, 2(2): 1626-1629.
  • 8侯森,罗兴国,宋克.基于信息源聚类的最大熵加权信任分析算法[J].电子学报,2015,43(5):993-999. 被引量:40
  • 9ABOUZEID A, BAJDA-PAWLIKOWSKI K, ABADI D, et al. HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads [J]. Proceedings of the VLDB Endowment, 2014, 2(1) : 922-933.

二级参考文献58

  • 1Dean J,Ghemawat S.MapReduce:Simplified Data Processing onLarge Clusters[J].Communications of the ACM,2008,51(1):107-113.
  • 2White T.Hadoop:The Definitive Guide[M].O’Reilly Media,2009.
  • 3Ghemawat S,Gobioff H,Leung S.The Google File System[C].In:Proceedings of the 19th ACM SIGOPS Symposium on OperatingSystems Principles(SOSP’03),Bolton Landing,NY.New York,USA:ACM,2003:29-43.
  • 4MapReduce Tutorial[EB/OL].[2011-08-19].http://ha-doop.apache.org/common/docs/current/mapred_tutorial.html.
  • 5EE382a:Advanced Processor Architecture[EB/OL].[2011-08-20].https://courseware.stanford.edu/pg/courses/95981.
  • 6Ranger C,Raghuraman R,Penmetsa A,et al.Evaluating MapRe-duce for Multi-core and Multiprocessor Systems[C].In:Pro-ceedings of the 2007 IEEE 13th International Symposium on HighPerformance Computer Architecture(HPCA’07).Washington,DC,USA:IEEE Computer Society,2007:13-24.
  • 7Technical Overview Disco Architecture[EB/OL].[2011-12-22].http://discoproject.org/doc/overview.html.
  • 8He B S,Fang W B,Luo Q,et al.Mars:A MapReduce Frameworkon Graphics Processors[C].In:Proceedings of the 17th Interna-tional Conference on Parallel Architectures and Compilation Tech-niques(PACT’08).New York,NY,USA:ACM,2008:260-269.
  • 9Mars:A MapReduce Framework on Graphics Processors[EB/OL].[2011-08-20].http://www.cse.ust.hk/gpuqp/Mars.html.
  • 10Hadoop Streaming[EB/OL].[2011-12-23].http://hadoop.apache.org/common/docs/r0.15.2/streaming.html.

共引文献94

同被引文献46

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部