期刊文献+

两种多体机器人高速避障控制研究 被引量:3

High Speed Obstacle Avoidance Control for Two Robots Stud
在线阅读 下载PDF
导出
摘要 在移动多机器人系统避障控制优化过程中,两机器人避障问题是多智能体机器人高速避障的基础。为提高两机避障的效率,提出了一种基于生存理论思想的两个机器人相互避障方法。生存理论方法先检测两机器人是否达到危险条件,一旦到达危险避障条件两机器人便进行通讯信息,根据生存理论思想给出控制量的安全区域;最后对安全区域中控制量进行优化,得出双方都满意的最优解。两机根据最优解进行高速避障控制。通过大量的仿真表明,提出的生存理论方法可以有效地解决多种两体机器人的避障优化问题。 The mobile robot system is widely used and the obstacle avoidance problem for two robots is the basis of the high - speed obstacle avoidance control for multi - agents. In order to improve the efficiency of collision of two robots, we presented a high speed obstacle avoidance approach based on the viability theory. Firstly, the method detected whether the two robots reach the dangerous conditions. If the two robots reach the conditions, the two robots communicate information with each other. According to the viability theory, the safe area of the control can be obtained. The optimization method was applied to the safe area to get the best solution. The two robots can avoid each other in high speed according to the optimization control. The simulation results show that our method can efficiently solve various high speed obstacle avoidance control for two robots.
出处 《计算机仿真》 CSCD 北大核心 2015年第12期318-321,共4页 Computer Simulation
关键词 两机避障 生存理论 最优化 Avoidance control for two robots Viability theory Optimizatio
  • 相关文献

参考文献7

二级参考文献27

  • 1刘磊,许晓鸣.自主导航避障移动机器人仿真软件设计[J].华中科技大学学报(自然科学版),2011,39(S2):196-199. 被引量:5
  • 2高岩.一类非线性控制系统可生存性的判别[J].信息与控制,2005,34(4):510-512. 被引量:11
  • 3高岩.一类非线性控制系统关于非光滑区域生存性的判别[J].控制与决策,2006,21(8):923-925. 被引量:14
  • 4Quincampoix M, Seube N. Stabilization of Uncertain Control Systems Through Piecewise Constant Feedback[J]. J Mathematics Analysis and Applications, 1998,218(1) : 240-255.
  • 5Gao Y, Lygeros J, Quincampoix M, et al. On the Control of Uncertain Impulsive System: Approximate Stabilisation and Controlled Invariance [J]. Int J Control, 2004,77(16) :1393-1407.
  • 6Aubin J-P. Viability Theory [M]. Boston: Birkhauser,1991.
  • 7Clarke F H, Leda Yu S, Stern R J,et al. Nonsmooth Analysis and Control Theory [M]. New York:Springer-Verlag, 1998.
  • 8Demyanov V F, Rubinov A M. Constructive Nonsmooth Analysis [M]. Frankfurt am Main: Peterlang, 1995.
  • 9Gao Y. Demyanov Difference of Two Sets and Optimality Conditions of Lagrange Multiplier Type for Constrained Quasidifferentiable Optimization [J]. J Optimization Theory and Applications, 2000, 104 (2) :377-394.
  • 10Paolo Fiorini,Zvi Shiller.Motion planning in dynamic environments using velocity obstacles[J].The International Journal of Robotics Research,1998,17(7):760-772.

共引文献49

同被引文献60

引证文献3

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部