期刊文献+

基于观测矩阵优化的自适应压缩宽带频谱感知 被引量:5

Adaptive Compressive Wideband Spectrum Sensing based on Measurement Matrix Optimization
在线阅读 下载PDF
导出
摘要 压缩采样(CS,又称压缩感知)技术的出现为频谱感知在更宽的频谱范围探测稀疏信号带来了革命性的契机。这里将观测矩阵优化与压缩采样自适应过程相结合,提出了一种优化的自适应压缩宽带频谱感知算法。此外,还引入交叉验证理论,从而保证了信号采样阶段的自动终止,以防止浪费硬件资源。理论分析和实验仿真表明,相比于传统自适应压缩感知方法,所提算法能够在较低信号采样率的情况下获得满意的信号恢复精度。 The emergence of compressive sampling (CS, also known as compressive sensing) technology brings a revolutionary opportunity to spectrum sensing for its detecting the sparse signals in broader spec- trum span. In combination of measurement matrix optimization and adaptive process of compressive sam- pling a modified adaptive compressive wideband spectrum sensing algorithm is proposed. In addition, a CV (Cross Validation) method is introduced, thus to guarantee the automatic termination of signal acquisition stage, and avoid the waste of hardware resources. Theoretical analysis and experimental simulations indi- cate that, compared with traditional CS recovery algorithm, the proposed algorithm could achieve satisfac- tory signal recovery precision in the situation of fairly low sampling rate.
出处 《通信技术》 2016年第1期62-67,共6页 Communications Technology
基金 国家自然科学基金青年项目(No.61301160)~~
关键词 认知无线电 宽带频谱感知 自适应压缩采样 观测矩阵优化 cognitive radio, wideband spectrum sensing, adaptive compressive sampling, measurement matrix optimization
  • 相关文献

参考文献17

  • 1FCC, EtDocket no. 02-135, Spectrum Policy Task Force (SPTF) Report. Federal Communications Commission. Tech. Rep.
  • 2王志文,徐以涛,江汉,罗屹洁,赵勇.基于USRP平台的宽带频谱感知系统设计与实现[J].通信技术,2015,48(6):750-754. 被引量:7
  • 3Available : http ://www. ti. com/product/ADC12D1800. TIAN Z and Giannakis G B. Compressive Sensing for Wideband Cognitive Radios [ C ]. in Proc. 2007 IEEE ICASSP, pp, 1357-1360.
  • 4Haupt J, Castro R M and Nowak R. Distilled Sensing: Adaptive Sampling for Sparse Detection and Estimation [ J ]. Information Theory, IEEE Transactions on, vol. 57, no. 9, pp. 6222-6235, 2011.
  • 5Haupt J, Baraniuk R, Castro R, and Nowak R. Sequen- tially Designed Compressed Sensing [ C ]. Statistical Sig- nal Processing Workshop (SSP), 2012 IEEE, Aug. , pp. 401-404.
  • 6SUN Hong-jian, ZHAO Wei-yu, Nallanathan A. Adap- tive Compressive Spectrum Sensing for Wideband Cogni- tive Radios [ J ] Communications Letters, IEEE, vol. 16, no. 11, pp. 1812, 1815, November 2012.
  • 7WANG X, GUO W, LU Y, and WANG W. Adaptive Compressive Sampling for Wideband Signal [ C ]. in Proc. 2011 IEEE International Conference on Vehicular Technology-spring, pp. 1-5.
  • 8HUANG Tian-yao, LIU Yi- min, MENG Hua- dong, WANG Xi-qin. Adaptive Compressed Sensing via Mini- mizing Cramer-Rao Bound [ J ]. Signal Processing Let- ters, IEEE , vol. 21, no. 3, pp. 270,274, March 2014.
  • 9HUANG Ching- Chun, WANG Li- Chtm. Dynamic Sam- piing Rate Adjustment for Compressive Spectrum Sensingover Cognitive Radio Network [ J ]. Wireless Communica- tions Letters, IEEE , vol. 1, no. 2, pp. 57,60, April 2012.
  • 10Polo Y, WANG Y, Pandharipande A, and Leus G. Com- pressive Wideband Spectrum Sensing [ C ]. IEEE Inter- national Conference on Acoustics, Speech and Signal Processing (ICASSP) , April 2009.

二级参考文献8

  • 1Mitola J, Maquire G J. Cognitive Radio : Making Software Radios More Personal [ J ]. IEEE Personal Communica- tions, 1999, 6(4): 13-18.
  • 2Nafkha A, Naoues M, Cichon K, et al. Experimental Spectrum Sensing Measurements Using USRP Software Radio Platform and GNU-radio[ C]. Cognitive Radio O- riented Wireless Networks and Communications (CROWNCOM), 2014 9th International Conference on, 2014. pp. 429-434.
  • 3MU Shu-juan, CHEN De-zhang, WANG Meng, et al. Spectrum Monitoring based on USRP2 Receiver[ C ]. An- tennas, Propagation & EM Theory (ISAPE), 2012 lOth International Symposium on ,2012. pp. 508-511.
  • 4Anas N M, Mohamad ti, Tahir M. Cognitive RadioTest Bed Experimentation Using USRP and Matlab (:Simu- hnk[ C ]. Computer Applications and Industrial Elec- tronics (ISCAIE), 2012 1EEE Symposium on,2012, pp. 229 -232.
  • 5Maleki S, Pandharipande A, Leus G. Two-Stage .Spec- trum Sensing for Cognitive Radios [ C ]. IEEE Interna- tional Conference on Acoustics Speech and Signal Pro- cessing( ICASSP), 2010:2946-2949.
  • 6王韦刚,杨震.基于压缩感知的宽带频谱检测[J].南京邮电大学学报(自然科学版),2012,32(6):1-6. 被引量:3
  • 7陈雷,李永成,王英泓,王新增.认知无线电的频谱感知算法研究[J].通信技术,2013(9):38-41. 被引量:10
  • 8余兵才,姚明,邓晓华,丁军.基于GNU Radio和USRP新型软件频谱分析仪[J].现代雷达,2014,36(9):17-21. 被引量:8

共引文献6

同被引文献31

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部