期刊文献+

百度指数和微指数在中国流感监测中的比较分析 被引量:25

Comparison of Baidu index and Weibo index in surveillance of influenza virus in China
在线阅读 下载PDF
导出
摘要 对百度指数、微指数在中国流感监测中的作用进行了比较和分析。相关性分析表明,相对于微指数,基于百度指数的关键词搜索数据与实际的流感流行的相关性更强,与流感的流行区间和峰值时间更相似,而且基于它们建立的回归模型能更准确地预测流感的流行。进一步,整合历史的流感流行数据能大大提高该回归模型的效果。因此,百度指数平台可以作为传统流感监测手段的一种有效补充。 This paper investigated and compared the role of Baidu index and Weibo index in the surveillance of influenza virus in China. Correlation analysis shows that the Baidu index of influenza-related keywords has a stronger correlation with the num- ber of influenza-like illness (ILl) in China than the Weibo index, although the correlation for both indexes is moderate. Be- sides, the epidemic period and peak time for the Baidu index is more similar to those of ILI than Weibo index. Regression a- nalysis further shows that the Baidu index could be used to predict ILI more accurately than Weibo index. Moreover, incorpo- ration of the historical ILl could significantly improve the performance of the regression model based on the Baidu index. Over- all, the Baidu index performs better than the Weibo index. It could be a useful tool for surveillance of influenza virus in Chi- na.
出处 《计算机应用研究》 CSCD 北大核心 2016年第2期392-395,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(31371338) 国家传染病重大专项资助项目(2013ZX10004611-002 2014ZX10004002-001) 湖南大学青年教师成长计划资助项目(531107040720) 湖南大学生物医学超算资助项目(531106011004)
关键词 百度指数 微指数 流感监测 Baidu index Weibo index influenza surveillance
  • 相关文献

参考文献15

  • 1World Health Organization seasonal influenza[EB/OL].http://www.who.int/mediacentre/factsheets/fs211/en/.
  • 2Freifeld C C,Mandl K D,Reis B Y,et al.HealthMap:global infectious disease monitoring through automated classification and visualization of Internet media reports[J].Journal of the American Medical Informatics Association,2008,15(2):150-157.
  • 3Polgreen P M,Chen Y,Pennock D M,et al.Using Internet searches for influenza surveillance[J].Clinical Infectious Diseases,2008,47(11):1443-1448.
  • 4Ginsberg J,Mohebbi M H,Patel R S,et al.Detecting influenza epidemics using search engine query data[J].Nature,2008,457(7232):1012-1014.
  • 5Culotta A.Towards detecting influenza epidemics by analyzing Twitter messages[C]//Proc of the 1st Workshop on Social Media Analytics.[S.l.] :ACM Press,2010:115-122.
  • 6Paul M J,Dredze M.You are what you Tweet:analyzing Twitter for public health[C]//Proc of ICWSM.2011:265-272.
  • 7Aramaki E,Maskawa S,Morita M.Twitter catches the flu:detecting influenza epidemics using Twitter[C]//Proc of Conference on Empiri-cal Methods in Natural Language Processing.[S.l.] :Association for Computational Linguistics,2011:1568-1576.
  • 8Achrekar H,Gandhe A,Lazarus R,et al.Predicting flu trends using Twitter data[C]//Proc of IEEE Conference on Computer Communications Workshops.[S.l.] :IEEE Press,2011:702-707.
  • 9Li Jiwei,Cardie C.Early stage influenza detection from Twitter[J/OL].Social and Information Networks,2013,arXiv:1309.7340.
  • 10Yuan Q,Nsoesie E O,Lyu B,et al.Monitoring influenza epidemics in China with search query from Baidu[J].PloS One,2013,8(5):e64323.

共引文献43

同被引文献145

引证文献25

二级引证文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部