期刊文献+

概念漂移数据流中可探测新颖类别的分类算法 被引量:2

A classification algorithm for novel class detection based on data stream with concept-drift
在线阅读 下载PDF
导出
摘要 针对可探测新颖类别的框架将数据流分成固定大小的数据块,导致新颖类别探测的准确率较低和处理速率较慢,且均假定数据对象所有属性具有相同的权重不符合实际情况的问题,提出一种在概念漂移数据流中探测新颖类别的分类算法(DNCS)。该算法通过周期检测滑动窗口中的数据分布,依据其变化动态调整数据块大小,以此更新分类模型,以适应新的数据变化。该算法框架使用基于属性权重的聚类算法作为探测新颖类别的基本步骤。实验结果表明,该算法具有更高的新颖类别探测精度和处理速率。 The most existing frameworks of novel class detection have low novel class detection accuracy and slow processing rate for dividing the data stream into fixed-size chunks, and it is not realistic that all the attributes o{ data objects have the same weight in the existing framework, a classification algorithm for novel class detection based on data stream with con- cept-drift(DNCS) is proposed. The algorithm periodically detects the data distribution in the sliding window, dynamically changes the size of the chunk and updates the model to adapt to the novel data. The improved algorithm makes the clustering algorithm based on attribute weight the basic step for detecting novel class. The experimental results show that DNCS has higher novel class detection accuracy and processing speed.
出处 《桂林电子科技大学学报》 2015年第6期459-465,共7页 Journal of Guilin University of Electronic Technology
基金 广西自然科学基金(2014GXNSFAA118395) 广西教育厅科研项目(2013YB094) 广西可信软件重点实验室基金(KX201116) 桂林电子科技大学研究生教育创新计划(GDYCSZ201466)
关键词 数据流 集成分类器 概念漂移 新颖类别探测 data stream ensemble classifier concept-drift novel class detection
  • 相关文献

参考文献11

  • 1王涛,李舟军,颜跃进,陈火旺.数据流挖掘分类技术综述[J].计算机研究与发展,2007,44(11):1809-1815. 被引量:41
  • 2Spinosa E J,de Leon F,Gama J.OLINDDA:a clusterbased approach for detecting novelty and concept drift in data streams[C]//Proceedings of SAC 2007.New York:ACM,2007:448-452.
  • 3Masud M M,Gao Jing,Khan L,et al.Integrating novel class detection with classification for concept-drifting data streams[C]//Proceedings of ECML PKDD'09:Volume II.Berlin:Springer-Verlag,2009:79-94.
  • 4Wang Haixun,Fan Wei,Philip S,et al.Mining conceptdrifting data streams using ensemble classifiers[C]//Proceedings of SIGKDD.New York:ACM,2003:226-235.
  • 5Masud M M,Chen Qing,Khan L,et al.Classification and adaptive novel class detection of feature-evolving data streams[J].IEEE Transactions on Knowledge and Data Engineering,2012,99(5):1484-1497.
  • 6邱良佩,缪裕青,陈宏,张锦杏.一种可探测新颖类别的数据流分类算法[J].桂林电子科技大学学报,2013,33(3):236-240. 被引量:2
  • 7Kuncheva L I.Classier ensembles for detecting concept change in streaming data:overview and perspectives[C]//Proceedings of the SW.Greece:ECAI,2008:5-9.
  • 8Gama J,Castillo G.Learning with Local Drift Detection[M]//Li X,Zaiane O R,Li Z H.Advaneed Data Mining and Applications:LNCS Volume 4093.Berlin:Springer,2006:42-55.
  • 9陈照阳,黄上腾.流数据分类中的概念漂移问题研究[J].计算机应用与软件,2009,26(2):254-256. 被引量:12
  • 10原福永,张晓彩,罗思标.基于信息熵的精确属性赋权K-means聚类算法[J].计算机应用,2011,31(6):1675-1677. 被引量:37

二级参考文献55

共引文献87

同被引文献37

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部