期刊文献+

基于双超平面的电力通信网业务QoS评价方法

QoS Evaluation Method Based on Double Decision Hyperplanes in Electric Power Communication Networks
在线阅读 下载PDF
导出
摘要 为解决传统业务服务质量(Quality of Services,Qo S)评价算法客观性不足、评价效率低等问题,将业务Qo S评价映射为业务Qo S等级分类,提出了一种基于双超平面(Double Decision Hyperplane,DDH)决策图的电力通信网业务实时Qo S评价方法。该方法提取业务网络层特征来表征业务的服务质量,以Qo S等级已知的现有业务作为分类器的训练样本,由分类器的构造顺序来确定决策图的形成。此外,算法对传统类间耦合度进行了重新定义,并在决策图各层按照最小类间耦合度原则依次构造分类双超平面,实现业务Qo S等级的不完全三分类,避免了传统多分类决策图低层结点"误差崩盘",自适应性低及决策图结构固定等问题。仿真结果证明,DDH决策图在电力业务Qo S评价中比经典DAG-SVM方法具有更短判决时间和更优分类性能,可更好地实现电力业务Qo S实时准确评价。 In order to solve the problems of the insufficient objectivity and low evaluation efficiency in traditional services quality (QoS) evaluation algorithms, a novel double decision hyperplanes (DDH) decision graph method, which mapped the QoS evaluation to the QoS level classification, was proposed to evaluate the real-time quality of services (QoS) in electric power communication networks. It extracted representative features to reveal services running conditions in the network layer and exploited the services whose QoS were known to train the classifiers. The decision graph structure was determined via the class grouping algorithm, which formed the groups of classes to be separated at each internal node. Moreover, a novel coupling degree between classes was presented and the double planes in each decision layer were created based on principle of the minimum coupling degree between classes. Since the node discriminations are implemented via incomplete ternary SVMs, the new method can well avoid problems of " error collapse" in low decision layer nodes, low adaptability and the fixed structure in conventional decision graph algorithms. Finally, simulation results show that, compared with other classic methods, the novel method exhibits a number of attractive merits such as enhanced classification accuracy, short decision time, as well as achieves a more real-time QoS evaluation for electric power communication network services.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2016年第1期92-98,共7页 Journal of North China Electric Power University:Natural Science Edition
基金 国家高技术研究发展计划资助项目(2014AA01A701) 北京市自然基金资助项目(4142049)
关键词 电力通信网 业务服务质量 双超平面 类间耦合度 DAG-SVM electric power communication networks quality of services double decision hyperplane coupling degree between classes DAG-SVM
  • 相关文献

参考文献16

  • 1Ye Yan, YiQian, HamidS, et al. Asurvey on smartgrid communication infrastructure: motivations, re-quirements and challenges [ J ]. IEEE CommunicationsSurveys and Tutorials, 2013 , 15 (1):5 -20.
  • 2李春华,冉静学,高会生.基于离差最大化方法的电力通信网传输部分的综合评估[J].电力系统保护与控制,2008,36(15):33-36. 被引量:4
  • 3Shah G A, Gungor V C, Akan 0 B. A Cross-LayerQoS-Aware Communication Framework in Cognitive Ra-dio Sensor Networks for Smart Grid Applications [ J ].Industrial Informatics, IEEE Transactions on, 2013 , 9(3): 1477 -1485.
  • 4AL Tameemi 0 A, Chatterjee M, Kwiat K. VectorQuantization based QoS Evaluation in Cognitive RadioNetworks [ C ]. Wireless and Optical CommunicationConference (WOCC),2014, 23rd: 1 -6.
  • 5Yosra M, Ayari A, Ayadi M. A Novel Approach forMobile Network QoS Evaluation [ C] . Networks, Com-puters and Communications, The 2014 InternationalSymposium on. IEEE, 2014; 1 -6.
  • 6Dogman A, Saatchi R, Al-Khayatt S. Evaluation ofComputer Network Quality of Service Using Neural Net-works [C]. Business,Engineering and Industrial Ap-IEEE, 2012: 217 -222.
  • 7周静,熊素琴,苏斌,卢利峰,陈希.一种电力通信网络运行质量量化评估方法及应用[J].电网技术,2012,36(9):168-173. 被引量:34
  • 8陈翔,吴润泽,曹敏,丁雷.基于模糊AHP的电力ICT网络业务质量评价方法[J].电力系统通信,2011,32(6):48-52. 被引量:5
  • 9Moustakidis S, Mallinis G, Koutsias N, et al. SVM-Based Fuzzy Decision Trees for Classification of HighSpatial Resolution Remote Sensing Images [ J ]. Geo-science and Remote Sensing, IEEE Transactions on,2012,50 (1) ; 149 - 169.
  • 10黄振龙,郑骏,胡文心.基于类间可分性DAG-SVM的文本分类[J].华东师范大学学报(自然科学版),2013(3):209-218. 被引量:4

二级参考文献49

  • 1张若英,孟洛明,邱雪松.支持多业务等级的NGI IP-VPN业务质量评价体系[J].北京邮电大学学报,2004,27(6):21-25. 被引量:8
  • 2许伟成,黄俊华,戴鳌前.光放大技术应用于长距离电力通信传输网[J].电力系统通信,2005,26(5):14-17. 被引量:4
  • 3刘会永,尹培生,孟洛明.基于业务的传送网故障测度新方法[J].电子学报,2007,35(1):185-189. 被引量:2
  • 4张奕奎,邱雪松,成璐.基于策略的业务质量评价方法[J].计算机工程,2007,33(13):109-111. 被引量:4
  • 5ASHOURIAN M, ZHU J, LAMBADARIS I. A Review on Online Quality Measures for Videos[C]. Proc. of IEEE Region 10 Conference on TENCON' 04. Chiangmai: IEEE Press. 2004.
  • 63GPP TS 23.107. Quality of Service(QoS) concept and architecture[S]. 2004.
  • 7FRANK J. Machine learning and intrusion detection: current and future directions[C]//Proceedings of the National 17th Computer Security Conferece, 1994:256-270.
  • 8ZANDER S, NGUYEN T, ARMITAGE G. Self-learning IP traffic classification based on statistical flow characeristics (poster) [ C ]//Proceedings of the Passive Active Measurement Workshop, Boston, USA, 2005:250-257.
  • 9MOORE A W, ZUEV D. Internet traffic classification us in bayesi ananalysis techniques [ C ]//Proc eding of the 2005 ACM SIGMETRICS. International Conference on Measurement and Modeling of Computer Systems, New York: ACM, 2005:50-60.
  • 10ZUEV D, MOORE A. Traffic classification using a statistical approach [ C ]//Proceedings of the 6th International Workshop on Passive and Active Network Measurement, 2005 : 321-324.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部