期刊文献+

R134a/R23复叠制冷系统级间容量比的优化分析 被引量:17

Optimization of Compressors Displacement Ratio in R134a/R23 Cascade Refrigeration System
在线阅读 下载PDF
导出
摘要 为了提高复叠制冷系统的性能以及优化系统设计时各循环压缩机的匹配问题,提出了无量纲参数——级间容量比,即低温循环压缩机进口处的体积流量与高温循环压缩机进口处的体积流量之比。建立了复叠制冷系统的数学模型,分析了级间容量比对中间温度和系统性能系数(COP)的影响,并在蒸发温度为-75^-55℃、冷凝温度为20~50℃及复叠温差为5~13℃的各种工况下,探究了最优级间容量比与工况参数的关系。结果表明:若级间容量比增加,则中间温度增加,COP先增加后缓慢减小,存在使COP最大的最优级间容量比;工况温度对COP的影响大于级间容量比对COP的影响,随冷凝温度上升,最优级间容量增大,蒸发温度上升,最优级间容量比增大;复叠温差增大,最优级间容量比减小;冷凝温度、蒸发温度及复叠温差平均每上升10℃,最优级间容量比变化范围为0.1~0.2。由工况参数和最优级间容量比的计算结果拟合得到了优化关联式,其计算思路和结果分析可为实际设计中各循环压缩机排量的选型匹配提供理论依据。 A dimensionless parameter,the compressor displacement ratio,is proposed to investigate the performance of the R134a/R23 cascade system and optimize the match of compressors of the system.The parameter is defined as the ratio of the compressor inlet volume flow rates between the low temperature cycle and the high temperature cycle.A numerical model is established to analyze the effect of the displacement ratio on the COP and the intermediate temperature.The relationship between the optimal displacement ratio and the operating parameters is discussed under various conditions when the evaporating temperature,condensing temperature and cascade temperature difference are ranged within-75--55℃,20-50℃and 5-13℃,respectively.The results show that the intermediate temperature increases with the displacement ratio,while the COP rises first and then drops slowly.The variation of the operating temperature exerts a stronger impact on the COP than the displacement ratio.The optimal displacement ratio increases with the condensing temperature and the evaporation temperature,and decreases when the cascade temperature difference rises.The correlations of theoptimal displacement ratio are obtained by fitting data of the working condition parameters and the optimum compressor displacement ratio.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2016年第2期104-110,共7页 Journal of Xi'an Jiaotong University
关键词 复叠制冷系统 压缩机匹配 变工况分析 优化 cascade refrigeration system compressor match off-design condition analysis optimization
  • 相关文献

参考文献10

  • 1赖芬,吴裕远,欧阳前武,胡凤姣,王永涛,杨敏.新型部分自复叠热泵的理论研究[J].西安交通大学学报,2012,46(3):15-20. 被引量:5
  • 2颜俊,任挪颖,钱伟,晏刚,厉彦忠.R600a/CO_2一级分凝和二级分凝自复叠制冷循环的性能研究[J].西安交通大学学报,2007,41(3):321-325. 被引量:3
  • 3DA SILVA A,BANDARRA FILHO E P,ANTUNES A H P.Comparison of a R744cascade refrigeration system with R404Aand R22conventional systems for supermarkets[J].Applied Thermal Engineering,2012,41:30-35.
  • 4PARK H,KIM D H,KIM M S.Thermodynamic analysis of optimal intermediate temperatures in R134a-R410Acascade refrigeration systems and its experimental verification[J].Applied Thermal Engineering,2013,54(1):319-327.
  • 5MA Ming,YU Jianlin,WANG Xiao.Performance evaluation and optimal configuration analysis of a CO2/NH3 cascade refrigeration system with falling film evaporator-condenser[J].Energy Conversion and Management,2014,79(1):224-231.
  • 6ALBERTO DOPAZO J,FERNNDEZ-SEARA J,SIERES J,et al.Theoretical analysis of a CO2-NH3cascade refrigeration system for cooling applications at low temperatures[J].Applied Thermal Engineering,2009,29(8):1577-1583.
  • 7KILICARSLAN A.An experimental investigation of a different type vapor compression cascade refrigeration system[J].Applied Thermal Engineering,2004,24(17):2611-2626.
  • 8RATTS E B,BROWN J S.A generalized analysis for cascading single fluid vapor compression refrigeration cycles using an entropy generation minimization method[J].International Journal of Refrigeration,2000,23(5):353-365.
  • 9MAFI M,NAEYNIAN S M,AMIDPOUR M.Exergy analysis of multistage cascade low temperature refrigeration systems used in olefin plants[J].International Journal of Refrigeration,2009,32(2):279-294.
  • 10赖艳华,董震,邵长波,吕明新,王庆为,孔德?.R404A与CO_2复叠式制冷系统的热力学分析与优化[J].山东大学学报(工学版),2011,41(2):149-153. 被引量:12

二级参考文献23

  • 1宁静红,马一太,李敏霞.CO_2低温制冷循环热力学分析[J].制冷与空调,2005,5(6):33-35. 被引量:8
  • 2韩晓霞,南晓红,刘咸定,C.A.Infante Ferreira.R290与R404A在水平管内沸腾换热的压降研究[J].制冷学报,2006,27(2):17-20. 被引量:9
  • 3任挪颖,颜俊,钱伟,晏刚,吴业正.自复叠制冷循环的研究状况[J].制冷与空调,2006,6(6):5-8. 被引量:13
  • 4PETTERSEN J, JAKOBSEN A. A dry ice slurry system for low temperature refrigeration[ C ]//International Symposium on Refrigeration in Sea Transport Today and in the Futur. Gdansk, Poland: [ s. n.], 1994 : 10-18.
  • 5GETU H M, BANSAL P K. Thermodynamic analysis of an R744-R717 cascade refrigeration system [J]. International Journal of Refrigeration, 2008, 31 ( 1 ) :45-54.
  • 6KITZMILLER W R. Advantages of CO2-ammonia system for low-temperature refrigeration [ J ]. Power, 1932, 1 : 92-94.
  • 7MISSIMER D J.Refrigerant conversion of auto refrig-erating cascade[J].International Journal of Refrigera-tion,1997,20(3):201-207.
  • 8GONG M Q,WU J F,LUO E C,et al.Thermody-namic design principle of mixed gases Kleemenko re-frigeration cycles[J].Advances in Cryogenic Engineer-ing,2002,47:873-880.
  • 9ALEXEEV A,MANTWILL E.Auto-refrigerating cas-cade and mixed gas Joule-Thomson refrigerator[C] ∥Proceeding of the 19th International Cryogenic Engi-neering Conference.Grenoble,France:Morgan&Claypool,2002:335-338.
  • 10ALEXEEV A,GOLUBEV D,MANTWILL E.Effi-ciency of the ARC and mixed gas Joule-Thomson re-frigerators[J].Cryocoolers,2003,12:595-601.

共引文献17

同被引文献125

引证文献17

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部