期刊文献+

基于视觉注意机制的机器人厚板焊接焊缝轮廓的识别 被引量:11

Weld seam profile identification based on visual attention mechanism in robotic thick-plate welding
在线阅读 下载PDF
导出
摘要 设计了一种视觉传感器同时采集熔池和焊缝轮廓,并提出一种基于视觉注意机制的机器人厚板焊接焊缝轮廓的提取方法.该方法以图像的亮度信息和方向信息作为初级视觉特征,并以焊缝图像作为亮度特征图,把对焊缝图像进行膨胀处理再进行Gabor滤波的结果作为方向特征图.对上述两种特征图进行显著性度量,然后对度量结果进行自适应特征融合获取综合显著图,并对其进行阈值分割和最近邻聚类.结果表明,最后在所有类别中以成员数最多的类所覆盖的区域作为最先被注意的区域,而其包含的数据即为焊缝轮廓信息. This paper presents a novel vision sensor to capture weld pools and weld seam profiles simultaneously in the same frame for implementing autonomous route planning in robotic thick plate welding. A method of extracting the weld seam profile based on visual attention mechanism from weld pool background is proposed here. In this method,brightness and direction are selected as primary visual characteristics,and the captured image is deemed as the brightness feature map while the direction feature map is acquired by Gabor filtering. Then,the above two feature maps are measured individually by the different methods to better highlight corresponding characteristics,and the two measured feature maps are integrated into a comprehensive saliency map by a self-judging algorithm. To extract the seam profile,threshold segmentation is applied to the comprehensive saliency map and followed by nearest neighbor clustering. The maximum cluster is the extracted seam profile and considered as the first noticed region. Experimental results show the effectiveness of the proposed method.
出处 《焊接学报》 EI CAS CSCD 北大核心 2015年第12期51-55,115,共5页 Transactions of The China Welding Institution
基金 国家自然科学基金资助项目(61374071 51405298) 上海市科委资助项目(11111100300) 国家发改委资助项目(HT[2012]2144)
关键词 视觉注意 焊缝识别 机器人焊接 厚板焊接 visual attention weld seam identification robotic welding welding of thick metal plates
  • 相关文献

参考文献9

  • 1邹怡蓉,都东,曾锦乐,张文增.基于多视觉特征获取与信息融合的焊道识别方法[J].焊接学报,2013,34(5):33-36. 被引量:10
  • 2张华军,张广军,蔡春波,高洪明,吴林.机器人多层多道焊缝激光视觉焊道的识别[J].焊接学报,2009,30(4):105-108. 被引量:19
  • 3蔡志勇,陈荣,余伏章,张华,胡保安.小波变换的多层多道焊接拐角跟踪点的识别研究[J].中国图象图形学报,2008,13(12):2344-2350. 被引量:6
  • 4王胜华,都东,曾凯,邹怡蓉.基于纹理特征的焊缝识别方法[J].焊接学报,2008,29(11):5-8. 被引量:10
  • 5Itti L, Koch C, Niebur E. A model of saliency based visual atten- tion for rapid scene analysis[ J~. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 1998, 20( 11 ) : 1254 - 1259.
  • 6Harel J, Koch C, Perona P. Graph-based visual saliency [ C l// Proceedings of the 19th International Conference on Advances in Neural Information Prt~cessing Systems, Vancouver, Canada, 2006 : 545 - 52.
  • 7Daugman J. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cor- tical filters[J]. Journal of the Optical Society of America, 1985, 2 (7): 1160-1169.
  • 8Dauganan J. Complete discrete 2-D Gabor transforms by neural net- works for image analysis and compression [ J ]. IEEE Trmlsactions Acoustics, Speech and Signal Processing, 1988, 36(7): 1169 - 1179.
  • 9Mantas M, Mancas-Thillou C, Gosselin B, et al. A rarity-based visual attention map-application to texture description [ C ] // IEEE International Conference on Image Processing, Atlanta, USA, 2006 : 445- 448.

二级参考文献23

  • 1刘南生,俞进,徐志锋,谈振兴,范定环,徐申翔,张华.基于多层多道焊的弧焊机器人视觉信息提取及处理[J].南昌大学学报(理科版),2005,29(1):63-66. 被引量:3
  • 2黄军芬,殷树言,邹勇,蒋力培.多层焊填充层焊道图像处理及边缘提取[J].机械工程学报,2005,41(6):133-136. 被引量:5
  • 3周律,陈善本,林涛,陈文杰.基于局部视觉的弧焊机器人自主焊缝轨迹规划[J].焊接学报,2006,27(1):49-52. 被引量:9
  • 4Robot M, Haralick, Shanmugam K, et al. Testural features for image classification[J].IEEE Transactions on Systems, Man and Cybernetics, 1973, SMC- 3(6) : 610- 621.
  • 5Li Y F, Chen S Y. Automatic recalibration of an active structured. light vision system [ J ]. IEEE Transactions on Robotics and Automation, 2003.19(2) :259 - 268.
  • 6Wu J, Smith J S, Lucas J. Weld bead placement system for multipass welding[ J]. IEE Proceedings-Science, Measurement & Technology, 1996,143(2) :85 -90.
  • 7Charles K Chui. An Introduction to Wavelets [ M ]. New York: Academic Press, 1992.
  • 8Beattie R J, Cheng S K, Logue P S. The use of vision sensors in multipass welding applications[J]. Welding Journal, 1988(9) :28 - 33.
  • 9杨福生.小波变换的工程分析与应用[M].北京:科学出版社,2001..
  • 10章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..

共引文献37

同被引文献62

引证文献11

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部