期刊文献+

基于位置的社会化网络的并行化推荐算法 被引量:13

Parallelized recommendation algorithm in location-based social network
在线阅读 下载PDF
导出
摘要 针对传统的协同过滤算法在利用签到记录进行兴趣点(POI)推荐时不能充分利用签到信息所隐含的偏好、位置和社交网络信息而损失准确率的问题,以及传统的单机串行算法在大数据处理能力上的弱势,提出一种基于位置和朋友关系的协同过滤(LFBCF)算法,以用户历史偏好为基础,综合考虑用户社交关系网络进行协同过滤,并以用户的活动范围作为约束实现对用户的兴趣点推荐。为了支持大数据量的实验,将算法在Spark分布式计算平台上进行了并行化实现。研究过程中使用了Gowalla和Brightkite这两个基于位置的社会化网络数据集,分析了数据集中签到数量、签到位置之间距离、社交关系等可能对推荐结果造成影响的因素,以此来支持提出的算法。实验部分通过与传统的协同过滤算法等经典算法在准确率、F-measure上的对比验证了算法在推荐效果上的优越性,并通过并行算法与单机串行算法在不同数据规模上加速比的对比验证了算法并行化的意义以及性能上的优越性。 Since the traditional collaborative filtering algorithm cannot make full use of information implied in check-ins of users in recommendation process, which contains users' preference, location and social relationship, a recommendation algorithm was proposed, which exploits past user behavior, the check-in information and social relation of users to improve the precision of Point of Interests( POI) recommendation, namely Location-Friendship Based Collaborative Filtering( LFBCF).And the recommendation was implemented on distributed computing platform Spark to support large scale dataset in experiments. Two real datasets in Location-based Social Network( LBSN) including Gowalla and Brightkite were employed in experiments. The amount of check-ins, the distance between locations and the social relationship were analyzed to verify the proposed algorithm. The comparison of precision and F-measure with traditional algorithm confirms the effectiveness of the proposed algorithm; and the comparison of speed-up ratio between the parallelized algorithm and serial algorithm demonstrates the significance of parallelization and superiority of performance.
作者 曾雪琳 吴斌
出处 《计算机应用》 CSCD 北大核心 2016年第2期316-323,335,共9页 journal of Computer Applications
基金 国家863计划项目(2015AA050204) 北京市教育委员会共建项目建设计划项目~~
关键词 基于位置的社交网络 推荐系统 协同过滤 兴趣点 并行化 SPARK Location-based Social Network(LBSN) recommender system collaborative filtering Point of Interest(POI) parallelization Spark
  • 相关文献

参考文献22

  • 1刘树栋,孟祥武.基于位置的社会化网络推荐系统[J].计算机学报,2015,38(2):322-336. 被引量:61
  • 2WANG H, TERROVITIS M, MAMOULIS N. Location recommendation in location-based social networks using user check-in data[C]//SIGSPATIAL '13: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2013: 374-383.
  • 3GAO H J, TANG J L, HU X, et al. Content-aware point of interest recommendation on location-based social networks[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Menlo Park, California: AAAI Press, 2015: 1721-1727.
  • 4YE M, YIN P, LEE W-C, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]//SIGIR '11: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011: 325-334.
  • 5BAO J, ZHENG Y, MOKBEL M F. Location-based and preference-aware recommendation using sparse geo-social networking data[C]//SIGSPATIAL '12: Proceedings of the 20th International Conference on Advances in Geographic Information Systems. New York: ACM, 2012: 199-208.
  • 6YANG X, STECK H, GUO Y, et al. On top-k recommendation using social networks[C]//RecSys '12: Proceedings of the Sixth ACM Conference on Recommender Systems. New York: ACM, 2012: 67-74.
  • 7JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//RecSys '10: Proceedings of the Fourth ACM Conference on Recommender Systems. New York: ACM, 2010: 135-142.
  • 8MA H, KING I, LYU M R. Learning to recommend with social trust ensemble[C]//SIGIR '09: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2009: 203-210.
  • 9MA H, YANG H, LYU M R, et al. SoRec: social recommendation using probabilistic matrix factorization[C]//CIKM '08: Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 931-940.
  • 10LIU B, XIONG H. Point-of-interest recommendation in location based social networks with topic and location awareness[C]//Proceeding of the 13th SIAM International Conference of Data Mining. Philadelphia, PA: SIAM, 2013, 13: 396-404.

二级参考文献76

  • 1Cranshaw J, Toch E, Hong J, et al. Bridging the gap between physical location and online social networks// Proceedings of the 12th ACM International Conference on Ubiquitous Computing ( UbiComp 2010 ). Copenhagen, Denmark, 2010:119-128.
  • 2Yadav M S, Valck K D, Hennig-Thurau T, Hoffman D L. Social commerce: A contingency frameworks for assessing marketing potential. Journal of Interactive Marketing, 2013, 27(4) : 311-323.
  • 3Sarwat M, Eldawy A, Mokbel M F, Riedl J. PLUTUS: Leveraging location-based social networks to recommend potential customers to venues//Proceedings of the 14th International Conference on Mobile Data Managemant (MDM 2013). Milan, Italy, 2013:26-35.
  • 4Qu Y, Zhang J. Trade area analysis using user generated mobile location data//Proceedings of the 22nd International Conference on World Wide Web (WWW 2013). Rio de Janeiro, Brazil, 2013:1053-1064.
  • 5Stewart K, Glanville J L, Bennett D A. Exploring spatiotem- poral and social network factors in community response to major flood disaster. The Professinonal Geographer, 2014, 66(3) : 421-435.
  • 6Gao H, Barbier G, Goolsby R. Harnessing the crowd sourcing power of social media for disaster relief. IEEE Intelligent Systems, 2011, 26(3): 10-14.
  • 7Bahir E, Peled A. Identifying and tracking major events using geo-social networks. Social Science Computer Review, 2013, 31(4): 458-470.
  • 8McArdle G, Lawlor A, Furey E, Pozdnoukhov A. City-scale traffic simulation from digital footprints//Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp 2012). Beijing, China, 2012:47-54.
  • 9Liang Y, CaverIee J, Cheng Z, Kameth K Y. How big is the crowd ? Event and location based population modeling in social media//Proceedings of the 24th ACM Conference on Hypertext and Social Media (HT2013). Paris, France, 2013:99-108.
  • 10Caverlee J, Cheng Z, Sui D Z, Kamath K Y. Towards geo-social intelligence: Mining, analyzing, and leveraging geospatial footprints in social media. IEEE Data Engineering Bulletin, 2013, 36(3): 33-41.

共引文献60

同被引文献75

引证文献13

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部