期刊文献+

基于多特征相似的用户兴趣推荐 被引量:9

Recommendation of user′s interest based on multiple similar features
在线阅读 下载PDF
导出
摘要 通过协同过滤获取用户的兴趣是为其提供贴心的个性化服务的关键技术.针对传统的协同过滤推荐算法不仅只考虑用户间单个特征的相似性,而且忽略用户兴趣会随时间变化而变化,从而难以准确地预测目标用户的兴趣,针对上述问题,提出一种基于多特征相似的用户兴趣推荐算法.在近邻居中寻找出与目标用户多特征相似的用户,根据相似用户对项目的评分以及目标用户兴趣随时间变化的时间函数来预测目标用户对该项目的评分,从而达到向目标用户推荐的目的.实验结果表明,该算法与传统的协同过滤推荐算法相比,能有效地提高用户推荐的质量. Obtaining user's interests by collaborative filtering recommendation is the key technology to provide personalized service for the customer. The traditional collaborative filtering recommendation algorithm not only considers the similarity of users' single feature,but also ignores the change of users' interest with time. Thus, it is difficult to accurately predict the user interests. In view of the above problem,a recommendation algorithm of user's interest based on multiple similar features is proposed. First of all, users similar to the target user with multiple feature are found out in the neighborhood; then,in order to achieve the purpose of recommen- ding to the target user,the target user's assessment about the project is predicted based on the assessment of the similar users and the time function which represents change of the target user's interest with time. Experimental results show that the proposed algorithm is more effective than traditional collaborative filtering recommendation algorithm.
出处 《西安工程大学学报》 CAS 2016年第1期97-101,共5页 Journal of Xi’an Polytechnic University
基金 陕西省教育厅科学研究计划资助项目(14JK1307) 陕西省自然科学基金资助项目(2015JQ5157)
关键词 用户兴趣 多特征相似性 个性化推荐 协同过滤 时间函数 user's interests multiple similar features personalized recommendation collabora-tive filtering time function
  • 相关文献

参考文献14

  • 1MENG S,DOU W,ZHANG X, et al. KASR:A keyword-aware service recommendation method on mapreduce for big data applications[J]. IEEE Transactions on Parallel and Distributed Systems,, 2014,25 (12) 3221-3231.
  • 2ADOMAVICIUS G, KWON Y O. Improving aggregate recommendation diversity using ranking-based techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,24 (5) ~ 896-911.
  • 3CAI Y, LEUUNG H, LI Q, et al. Typicality-based collaborative filtering recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26 (3) : 766-779.
  • 4孟祥武,刘树栋,张玉洁,胡勋.社会化推荐系统研究[J].软件学报,2015,26(6):1356-1372. 被引量:143
  • 5邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 6孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法[J].软件学报,2013,24(11):2721-2733. 被引量:163
  • 7QIAN X, FENG H, ZHAO G, et al. Personalized recommendation combining user interest and social circle[J]. IEEE Transactions on Knowledge and Data Engineering, 2014,26 (7) : 1763-1777.
  • 8李瑞敏,林鸿飞,闫俊.基于用户-标签-项目语义挖掘的个性化音乐推荐[J].计算机研究与发展,2014,51(10):2270-2276. 被引量:42
  • 9KWON H J, HONG K S. Personalized smart TV program recommender based on collaborative filtering and a novel similarity method[J]. IEEE Transactions on Consumer Electronics,2011,57(3) : 1416-1423.
  • 10SUN H,ZHENG Z,CHEN J,et al. Personalized web service recommendation via normal recovery collaborative filte- ring[J]. IEEE Transactions on Services Computing, 2013,6 (4) : 573-579.

二级参考文献173

  • 1梅放,林鸿飞.基于社会化标签的移动音乐检索[c]//第五届全国信息检索学术会议论文集.北京:中国中文信息学会,2009:262-271.
  • 2J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166
  • 3Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196
  • 4J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87
  • 5高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003
  • 6Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80
  • 7G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749
  • 8Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129
  • 9G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254
  • 10Brendan Kitts,David Freed,Martin Vrieze.Cross-sell:A fast promotion-tunable customer-item recommendation method based on conditional independent probabilities[C].In:Proc of ACM SIGKDD Int'l Conf.New York:ACM Press,2000.437-446

共引文献530

同被引文献88

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部