期刊文献+

基于深度信念网络的信号重构与轴承故障识别 被引量:35

Signal reconstruction and bearing fault identification based on deep belief network
在线阅读 下载PDF
导出
摘要 针对传统智能识别需要复杂的特征提取过程,增加了操作的难度和不确定性,采用深度信念网络(Deep Belief Network,DBN)直接从原始数据对故障智能识别的方法。该方法避免了人工特征提取过程,增强了识别的智能性。将以原始数据为输入的DBN应用于轴承故障识别,接近100%正确识别率的实验结果表明:DBN可以直接通过原始数据对轴承故障进行高效识别。 Feature extraction is a crucial step affecting the performance of traditional intelligent identification with difficulty and uncertainty for manual operation.Starting directly from the raw data, the paper proposes a novel method for bearing fault identification based on deep belief network.The method can get the particular features and avoid manual operation for feature extraction, enhancing intelligence of diagnostic process.When DBN is applied to bearing fault identification with raw data, the experimental results with nearly 100% correct recognition rateshows that DBN can achieveefficiently fault identificationdirectly by the raw data.
出处 《电子设计工程》 2016年第4期67-71,共5页 Electronic Design Engineering
关键词 特征提取 受限玻尔兹曼机 DBN 深度学习 故障识别 feature extraction restricted boltzmann machine DBN deep learning fault identification
  • 相关文献

参考文献7

  • 1Hinton G, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006,18 (7):1527- 1554.
  • 2Bengio Y,Lamblin P,Popovici D,et al. Greedy layer-wise training of deep networks[J]. Advances in Neural Information Processing Systems, 2007,19:153.
  • 3Salakhutdinov R,Murray I. On the quantitative analysis of deep belief networks [C]//Proceedings of the 25th international conference on Machine learning. ACM, 2008: 872-879.
  • 4Hinton G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation ,2002,14(8): 1771-1800.
  • 5Bearing Data Center. Download a Data File [EB/OL]. http:// csegroups.case file. download -data.
  • 6Chen Y,Lin Z,Zhao X,et al. Deep Learning-Based Classifi- cation of Hyperspectral Data[J]. 2014,7(6):2094-2107.
  • 7Yang J,Zhang D,Yang J Y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 (1): 131-137.

同被引文献403

引证文献35

二级引证文献475

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部