期刊文献+

低功耗手机计步算法 被引量:2

Low power consumption pedometer algorithm for mobile phones
在线阅读 下载PDF
导出
摘要 针对长时间运行手机计步软件对手机电量消耗较大的问题,提出一种低功耗手机计步算法。根据行走时手机三轴加速度数据变化呈现上下波动的特点,在加速度数据变化方向改变时记录最高极值点和最低极值点数值,当两个极值点的幅度值大于幅度阈值时进行计步。测试结果表明该算法总体平均计步准确性可达97%,并且能够从传感器采样功耗和CPU计算功耗两方面降低计步过程的功耗。 To reduce the energy consumption while running pedometer software for a long period of time, an low power consumption pedometer algorithm is proposed. Based on the fact that the directions of three-axis acceleration data changes as a wave while walking, the maximum point and the minimum point when the direction changes can be checked and recorded by this algorithm. When the range difference between the maximum point and the minimum point exceeds the threshold value, one count takes place. Testing results show that the total average accuracy of this pedometer algorithm can reach to 97%, and energy consumption can be reduced in both sampling process of accelerometer and execution process of CPU.
出处 《西安邮电大学学报》 2016年第1期106-109,共4页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61373116) 陕西省教育厅产业化培育资助项目(2012JC22) 西安邮电大学青年教师科研基金资助项目(ZL2014-29)
关键词 低功耗 计步算法 手机计步 low power consumption, pedometer algorithm, mobile phone pedometer
  • 相关文献

参考文献8

二级参考文献28

  • 1姚昱旻,刘卫国.Android的架构与应用开发研究[J].计算机系统应用,2008,17(11):110-112. 被引量:281
  • 2宋浩然,廖文帅,赵一鸣.基于加速度传感器ADXL330的高精度计步器[J].传感技术学报,2006,19(4):1005-1008. 被引量:35
  • 3薛洋.基于单个加速度传感器的人体运动模式识别[D].广州:华南理工大学.2011.
  • 4Krishnan N C.A Computational Framework for Wearable Accelerometer Based Activity and Gesture Recognition[D].USA:Arizona State University,2010:14-25.
  • 5Lustrek M,Kaluza B.Fall detection and activity recognition with machine learning[J].Informatics(Ljubljana),2009,33(2):205-212.
  • 6Sensors Overview_Android Developers.(2014-03-30)[2014-04-20].http://developer.android.com/guide/topics/sensors/sensors_verview.html.
  • 7Incel O D,Kose M,ErsoyIncel C.A Review and Taxonomy of Activity Recognition on Mobile Phones[J].Springer BioNanoScience Journal,2013,3(2):145-171.
  • 8Lane N D,Miluzzo E,Lu H,et al.A survey of mobile phone sensing[J].Communications Magazine,IEEE,2010,48(9):140-150.
  • 9Hsu Chih-Wei,Chang Chih-Chung,Lin Chih-Jen.A practical guide to support vector classification[J].Bioinformatics,2010,1(1):1-16.
  • 10Chang Chih-Chung,Lin Jen.LIBSVM:A Library for Support Vector Machines.(2014-04-01)[2014-04-25].http://www.csie.ntu.edu.tw/~cjlin/libsvm.

共引文献113

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部