期刊文献+

基于协同表示的多特征融合岩石分类 被引量:8

Rock classification of multi-feature fusion based on collaborative representation
在线阅读 下载PDF
导出
摘要 针对传统的岩石薄片成分分析耗时、识别率不高等问题,提出了一种基于协同表示(CR)的岩石薄片成分分析方法。首先,分析探讨了岩石薄片中颗粒纹理特性,证明将薄片图像的分层多尺度局部二值化(HMLBP)特征与灰度共生矩阵(GLCM)特征相融合能有效地表征岩石薄片中颗粒的纹理。然后,为降低识别阶段时间复杂度,采用主成分分析(PCA)方法将新特征降维到100维。最后,采用基于协同表示的分类器(CRC)进行分类识别。与基于稀疏表示的分类器(SRC)分别采用样本字典中某一个样本单独编码表征预测样本不同,基于协同表示的分类器采用样本字典中的所有样本协同编码表征预测样本,借助不同样本的同一属性提高识别率。实验结果表明该方法的识别速度较基于稀疏的分类器识别方法提高300%,识别率提高2%;在实践应用中能较好地区分岩石薄片中的石英成分和长石成分。 To solve the issues of time-consuming and low recognition rate in the traditional component analysis of rock slices,a method of component analysis of rock slices based on Collaborative Representation( CR) was proposed. Firstly,texture feature of grain in rock slices was discussed,and the way of combining Hierarchical Multi-scale Local Binary Pattern( HMLBP) and Gray Level Co-occurrence Matrix( GLCM) was proved to characterize the texture of grain in rock slices well.Then,in order to reduce the time complexity of classification,the dimension of new features was reduced to 100 by using Principal Component Analysis( PCA). Finally,the Collaborative Representation based Classification( CRC) was used as the classifier. Differ to Sparse Representation based Classification( SRC),prediction samples were encoded by all the samples in train dictionary collaboratively instead of some single sample alone. Same attributes of different samples can improve the recognition rate. The experimental results show that the recognition speed of the method increases by 300% and the recognition rate of the method increases by 2% compared to SRC. In practical application,it can distinguish quartz and feldspar components in rock slices well.
出处 《计算机应用》 CSCD 北大核心 2016年第3期854-858,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61372174)~~
关键词 协同表示 纹理特征 特征融合 分类器 岩石薄片 Collaborative Representation(CR) Texture Feature(TF) Feature Fusion(FF) classify Rock Slice(RS)
  • 相关文献

参考文献13

  • 1GORSEVSKI P V, ONASCH C M, FARVER J R, et al. Detecting grain boundaries in deformed rocks using a cellular automata approach [ J]. Computers and Geoseiences, 2012, 42(3) : 136 - 142.
  • 2ZHOU Y, STARKEY J, MANSINHA L. Segmentation of petrographic images by integrating edge detection and region growing [ J]. Computers and Geosciences, 2004, 30(8) : 817 - 831.
  • 3HEILBRONNER R. Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images [ J]. Journal of Structural Geology, 2000, 22(7) : 969 -981.
  • 4KACHANUBAN T, UDOMHUNSAKUL S. Natural rock images classification using spatial frequency measurement [ C]// Proceedings of the 2007 International Conference on Intelligent and Advanced Systems. Piscataway, NJ: IEEE, 2007:815-818.
  • 5SHANG C, BARNES D. Support vector machine-based classification of rock texture images aided by efficient feature selection [ C]//Proceedings of the 2012 International Joint Conference on Neural Networks. Piseataway, NJ: IEEE, 2012:1-8.
  • 6IZADI H, SADRI J, MEHRAN N A. A new approach to apply texture features in minerals identification in petrographic thin sections using ANNs [ C]//Proceedings of the 2013 8th Iranian Conference on Machine Vision and Image Processing. Piscataway, NJ: IEEE, 2013:257 - 261.
  • 7LI B, ZHANG T, BAI L, et al. Components classification of the clastic rock thin-sections based on GIS [ C]// Proceedings of the 2010 International Conference on Image Analysis and Signal Processing. Piscataway, NJ: IEEE, 2010:327-331.
  • 8APRILE A, CASTELLANO G, ERAMO G. Combining image analysis and modular neural networks for classification of mineral inclusions and pores in archaeological potsherds [ J]. Journal of Archaeological Science, 2014, 50:262 - 272.
  • 9ULABY F T, KOUYATE F, BRISCO B, et al. Textural information in SAR images [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2) : 235 - 245.
  • 10OJALA T, PIETIKAINEN M, MAENPAA T. Muhiresolution grayscale and rotation invariant texture classification with local binary patterns [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7) :971 -987.

同被引文献64

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部