期刊文献+

基于随机森林分类算法的巢湖水质评价 被引量:38

Water quality evaluation of Chaohu Lake based on random forest method
原文传递
导出
摘要 基于监测数据及机器学习算法的湖泊水质实时评价技术对当前湖泊水资源的管理、维护和保护具有重要意义。本文针对巢湖水质的类别评价,利用随机森林(Random Forest,RF)分类算法对该区域水质进行类别判定。与其他算法相比,随机森林算法有着精度高、可容忍噪声强等诸多优点。测试结果表明,当决策树的棵数ntree=300,分裂属性集中属性个数mtry=2时,在合肥湖滨监测断面水质分类准确率可达96.15%,在巢湖裕溪口监测断面水质分类准确率高达100%,该方法具有稳健性较高、实用性强、泛化性能好等特点,能够有效进行水质评价。 Real time evaluation of water quality based on monitoring data and machine learning algorithm has great significance for management,maintenances and protection of water resources in lake. Aiming at the class evaluation of water quality of Chaohu,a classification algorithm named random forest was used to determine the category of the water quality of this area. Comparing with other typical machine learning methods,this method has higher precision of classification and better tolerableness of noise. The testing result shows that when the quantities of the decision-making tree: ntree = 300 and the number of attributes of split attribute sets: mtry = 2,the accuracy rate of water quality classification in Hefei Hubin monitoring section could reach 96. 15%,and it reaches as high as 100% in Yu Xikou monitoring section. The suggested method has higher robustness,stronger practicability and higher generalization performance. It can effectively fulfill water quality assessment with high precision.
作者 张颖 高倩倩
出处 《环境工程学报》 CAS CSCD 北大核心 2016年第2期992-998,共7页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(61273068) 上海市自然科学基金资助项目(12ZR1412600) 上海市教委科研创新资助项目(13YZ084)
关键词 随机森林算法 决策树 分裂属性集 水质评价 random forest algorithm decision-making tree split attribute sets water quality assessment
  • 相关文献

参考文献15

  • 1Breiman L. Random forests. Machine Learning, 2001, 45 (1) : 5-32.
  • 2Chen Xuewen, Liu Mei. Prediction of protein-protein inter- actions using random decision forest framework. Bioinfor- matics, 2005, 21(24): 4394-4400.
  • 3Smith A. , Sterba-Boatwright B. , Mott J. Novel application of a statistical technique, random forests, in a bacterial source tracking study. Water Research, 2010, 44 (14) : 4067 -4076.
  • 4Ying Weiyun, Li Xiu, Xie Yaya, et al. Preventing custom- er churn by using random forests modeling//Proceedings of the IEEE International Conference on Information Reuse and Integration( IRI 2008). Las Vegas, NV, USA : IEEE, 2008 : 429-434.
  • 5Lee S. L. A. , Kouzania A. Z. , Hu E. J. Random forest based lung nodule classification aided by clustering. Com- puterized Medical Imaging and Graphics, 2010, 34 (7) : 535 -542.
  • 6Ward M. M. , Pajevic S. , Dreyfuss J. , et al. Short - term prediction of mortality in patients with systemic lupus erythematosus : Classification of outcomes using random for- ests. Arthritis Care & Research, 2006, 55 (1) : 74-80.
  • 7孟杰.随机森林模型在财务失败预警中的应用[J].统计与决策,2014,30(4):179-181. 被引量:21
  • 8康有,陈元芳,顾圣华,姚欣明,黄琴,汤艳平.基于随机森林的区域水资源可持续利用评价[J].水电能源科学,2014,32(3):34-38. 被引量:35
  • 9张雷,王琳琳,张旭东,刘世荣,孙鹏森,王同立.随机森林算法基本思想及其在生态学中的应用--以云南松分布模拟为例[J].生态学报,2014,34(3):650-659. 被引量:152
  • 10席北斗,赫英臣,龚斌.德国巴伐利亚州水域水质分类特征[J].人民黄河,2010,32(1):50-51. 被引量:3

二级参考文献74

共引文献1005

同被引文献476

引证文献38

二级引证文献236

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部