期刊文献+

利用聚丙烯酸钠-Nafion混合膜增强三联吡啶钌掺杂SiO_2纳米粒的电化学发光信号及其生物标记 被引量:5

Electrochemiluminescence Signal Enhancement of Ru(bpy)_3^(2+)-doped SiO_2 Nanoparticles Based on Sodium Polyacrylate-Nafion Mixing Membrane and Their Bio-labeling
在线阅读 下载PDF
导出
摘要 对于三联吡啶钌(Ru(bpy)_3^(2+))掺杂的SiO_2纳米粒,以聚电解质聚丙烯酸钠和成膜物质Nafion的混合液对纳米粒进行包覆,制备了聚丙烯酸钠和Nafion混合膜包覆的电化学发光(ECL)纳米粒。结果表明:混合膜包覆的纳米粒,相对于Nafion膜的ECL信号增强了13倍。同时,混合膜表面可交换阳离子显著增加,能够通过离子交换固载大量的Ru(bpy)_3^(2+),纳米粒的ECL信号可进一步增强约3倍。混合膜还具有另外一个显著的优势,即通过混合膜的疏水相互作用可以方便地标记生物大分子,标记抗体仍然具有良好的免疫活性。 Ru(bpy)3^2+-doped SiO2 nanoparticles were covered with the mixture of polyelectrolyte sodium polyaerylate and membrane-forming substance Nation, and then the electrochemilumines- cence (ECL) nanoparticles were acquired. The results show that ECL intensity of the polyacrylate- Nation mixing membrane covered nanopartieles is enhanced 13 times, compared with the Nafion membrane covered nanoparticles. At the same time, there is an obvious increase of the exchangeable cation on the surface of the mixing membrane, and more Ru(bpy)3^2+ can be immobilized on the surface of the nanoparticles based on ion exchanging, and the corresponding ECL intensity can be enhanced about 3 times. Another significant advantage of the mixing membrane is that the as-pre- pared nanoparticles can label bio-macromolecule more easily based on the hydrophobic interaction. The results show that the labelled antibody still has good immune activity.
出处 《发光学报》 EI CAS CSCD 北大核心 2016年第3期310-314,共5页 Chinese Journal of Luminescence
关键词 信号增强 电化学发光纳米粒 聚丙烯酸钠 Nafion混合膜 生物标记 signal enhancement electroehemilumineseence nanoparticles sodium polyacrylate Nation-mixing membrane bio-labelling
  • 相关文献

参考文献11

  • 1SARDESAI N P, BARRON J C, RUSLING J F. Carbon nanotube microwell array for sensitive electrochemiluminescent detection of cancer biomarker proteins [J]. Anal. Chem., 2011, 83(17):6698-6703.
  • 2YUAN S R, YUAN R, CHAI Y Q, et al.. Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP [J]. Talanta, 2010, 82(4):1468-1471.
  • 3QIAN J, ZHOU Z X, CAO X D, et al.. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru(bpy)32+-encapsulated silica nanosphere labels [J]. Anal. Chim. Acta, 2010, 665(1):32-38.
  • 4YANG X, YUAN R, CHAI Y Q, et al.. Ru(bpy)32+-doped silica nanoparticles labeling for a sandwich-type electrochemiluminescence immunosensor [J]. Biosens. Bioelectron., 2010, 25(7):1851-1855.
  • 5GE Z L, SONG T M, CHEN Z, et al.. Polyelectrolyte-based electrochemiluminescence enhancement for Ru(bpy)32+ loaded by SiO2 nanoparticle carrier and its high sensitive immunoassay [J]. Anal. Chim. Acta, 2015, 862:24-32.
  • 6郭武润,豆兴茹,葛芝莉,任兆刚,谢洪平.三联吡啶钌超分子包合物及其SiO2复合纳米粒的电化学发光信号放大[J].发光学报,2014,35(5):558-564. 被引量:3
  • 7RUBINSTEIN I, BARD A J. Polymer films on electrodes. 4. Nafion-coated electrodes and electrogenerated chemiluminescence of surface-attached tris (2, 2'-bipyridine) ruthenium2+ [J]. J. Am. Chem. Soc., 1980, 102(21):6641-6642.
  • 8RUBINSTEIN I, RISHPON J, GOTTESFELD S. An AC-impedance study of electrochemical processes at nafion-coated electrodes [J]. J. Electrochem. Soc., 1986, 133(4):729-734.
  • 9WANG J, GOLDEN T. Permselectivity and ion-exchange properties of Eastman-AQ polymers on glassy carbon electrodes [J]. Anal. Chem., 1989, 61(13):1397-1400.
  • 10LIU H Y, YING T L, SUN K, et al.. Reagentless amperometric biosensors highly sensitive to hydrogen peroxide, glucose and lactose based on N-methyl phenazine methosulfate incorporated in a Nafion film as an electron transfer mediator between horseradish peroxidase and an electrode [J]. Anal. Chim. Acta, 1997, 344(3):187-199.

二级参考文献19

  • 1Miao W,Bard A J. Electrogenerated chemiluminescence.77 DNA hybridization detection at high amplification with[Ru(bpy)3]2+-containing microspheres[J].Analytical Chemistry,2004,(18):5379-5386.
  • 2Gorman B A,Francis P S,Barnett N W. Tris(2,2'-bipyridyl)ruthenium(Ⅱ) chemiluminescence[J].The Analyst,2006,(05):616-639.
  • 3Marquette C A,Blum L J. Electro-chemiluminescent biosensing[J].Analytical Biochemistry,2008,(01):155-168.
  • 4Snyder S W,Buell S L,Demas J N. Interactions of ruthenium (Ⅱ) photosensitizers with surfactant media[J].Journal of Physical Chemistry,1989,(13):5265-5271.
  • 5Factor B,Muegge B,Richter M M. Surfactant chain length effects on the light emission of tris(2,2'-bipyridyl)ruthenium(Ⅱ)/tripropylamine electrogenerated chemiluminescence[J].Analytical Chemistry,2001,(19):4621-4624.
  • 6Zhou M,Roovers J,Robertson J P. Multilabeling biomolecules at a single site.1 Synthesis and characterization of a dendritic label for electrochemiluminescence assays[J].Analytical Chemistry,2003,(23):6708-6717.
  • 7Liang P,Dong L,Martin M T. Light emission from ruthenium-labeled penicillins signaling their hydrolysis by β-Ⅱactamase[J].Journal of the American Chemical Society,1996,(38):9198-9199.
  • 8Alonso M C S,Zamora L L,Calatayud J M. Determination of tyrosine through a FIA-direct chemiluminescence procedure[J].TALANTA,2003,(2-3):369-376.
  • 9Liu B,Ren T,Zhang J R. Spectroelectrochemistry of hollow spherical CdSe quantum dot assemblies in water[J].ELECTROCHEMISTRY COMMUNICATIONS,2007,(04):551-557.
  • 10Qian J,Zhou Z X,Cao X D. Electrochemiluminescence immunosensor for ultrasensitive detection of biomarker using Ru (bpy) 32+-encapsulated silica nanosphere labels[J].Analytica Chimica Acta,2010,(01):32-38.

共引文献2

同被引文献25

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部