期刊文献+

On the LSP3 estimates of surface gravity for LAMOST-Kepler stars with asteroseismic measurements 被引量:1

On the LSP3 estimates of surface gravity for LAMOST-Kepler stars with asteroseismic measurements
在线阅读 下载PDF
导出
摘要 Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples-- the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of -0.2 dex. Except for a few cases, asteroseismic surface gravities ofHuber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed. Asteroseismology allows for deriving precise values of the surface gravity of stars. The accurate asteroseismic determinations now available for the large number of stars in the Kepler fields can be used to check and calibrate surface gravities that are currently being obtained spectroscopically for a huge number of stars targeted by large-scale spectroscopic surveys, such as the on-going Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Galactic survey. The LAMOST spectral surveys have obtained a large number of stellar spectra in the Kepler fields. Stellar atmospheric parameters of those stars have been determined with the LAMOST Stellar Parameter Pipeline at Peking University (LSP3), by template matching with the MILES empirical spectral library. In the current work, we compare surface gravities yielded by LSP3 with those of two asteroseismic samples-- the largest Kepler asteroseismic sample and the most accurate Kepler asteroseismic sample. We find that LSP3 surface gravities are in good agreement with asteroseismic values of Hekker et al., with a dispersion of -0.2 dex. Except for a few cases, asteroseismic surface gravities ofHuber et al. and LSP3 spectroscopic values agree for a wide range of surface gravities. However, some patterns in the differences can be identified upon close inspection. Potential ways to further improve the LSP3 spectroscopic estimation of stellar atmospheric parameters in the near future are briefly discussed. The effects of effective temperature and metallicity on asteroseismic determinations of surface gravities for giant stars are also discussed.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2016年第3期81-90,共10页 天文和天体物理学研究(英文版)
基金 supported by the National Key Basic Research Program of China(2014CB84570) the European Research Council under the European Community’s Seventh Framework Programme(FP7/20072013)/ERC grant agreement(No 338251,Stellar Ages) The Guo Shou Jing Telescope(the Large Sky Area Multi-Object Fiber Spectroscopic Telescope,LAMOST)is a National Major Scientific Project built by the Chinese Academy of Sciences Funding for the project has been provided by the National Development and Reform Commission
关键词 methods: data analysis -- stars: fundamental parameters -- stars: spectroscopic -- stars general -- stars: oscillations methods: data analysis -- stars: fundamental parameters -- stars: spectroscopic -- stars general -- stars: oscillations
  • 相关文献

参考文献36

  • 1Baglin, A., Auvergne, M., Barge, P., et al. 2006, in ESA Special Publication, 1306, ESA Special Publication, eds. M. Fridlund, A. Baglin, J. Lochard, & L. Conroy, 33.
  • 2Batalha, N. M., Borucki, W. J., Bryson, S. T., et al. 2011, ApJ, 729,27.
  • 3Borucki, W., Koch, D., Basri, G., et al. 2008, in lAU Symposium, 249, eds. Y-S. Sun, S. Ferraz-Mello, & J.-L. Zhou, 17.
  • 4Brown, T. M., Gilliland, R. L., Noyes, R. W., & Ramsey, L. W. 1991, ApJ, 368, 599.
  • 5Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ, 142, 112.
  • 6Buzasi, D., Catanzarite, J., Laher, R., et al. 2000, ApJ, 532, L133.
  • 7Cassisi, S., Pietrinfemi, A., Salaris, M., et al. 2006, Mem. Soc. Astron. Italiana, 77, 71.
  • 8Cui, X.-Q., Zhao, Y.-H., Chu, Y.-Q., et al. 2012, RAA (Research in Astronomy and Astrophysics), 12, 1197.
  • 9De Cat, P., Fu, J. N., Ren, A. B., et al. 2015, ApJS, 220,19.
  • 10Deng, L.-C., Newberg, H. 1., Liu, C., et al. 2012, RAA(Research in Astronomy and Astrophysics), 12,735.

同被引文献4

引证文献1

  • 1Jian-Ning Fu,Peter De Cat,Weikai Zong,Antonio Frasca,Richard O.Gray,An-Bin Ren,Joanna Molenda-Zakowicz,Christopher J.Corbally,Giovanni Catanzaro,Jian-Rong Shi,A-Li Luo,Hao-Tong Zhang.Overview of the LAMOST-Kepler project[J].Research in Astronomy and Astrophysics,2020,20(10):343-352. 被引量:2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部