摘要
设A是n×n的复矩阵,其特征值为λ_1(A),…,λ_n(A).设C_m(A)为A的m阶复合矩阵,D_2(A)为C_2(A)的导数矩阵,AB为A与B的Kronecker乘积.令R_i(A)=排成非增次序后记作我们得到了估计式:
Let A be a n×n complex matrix with eigenvalues λ_1(A), …, λ_n(A). Let C_m(A) be the mth compound of A, D_2(A)the derivation of C_2(A), and AB the Kronecker product of A and B. Let R_([1])(A)≥…≥R_([n])(A) denote in decreasing order. Set L=AI_n — I_nA, M=D_2(A^2)— -2C_2(A). We obtained the following bounds
出处
《北京师范大学学报(自然科学版)》
CAS
1985年第4期10-13,共4页
Journal of Beijing Normal University(Natural Science)