期刊文献+

基于JPEG2000的遥感图像感兴趣区域编码新算法及其VLSI设计 被引量:6

A New Region of Interest Coding Algorithm Based on JPEG2000 for Remote Sensing Images and Its VLSI Design
在线阅读 下载PDF
导出
摘要 为解决空间遥感图像数据量及信道带宽之间的矛盾,该文提出一种基于JPEG2000的感兴趣区域(Region Of Interest,ROI)编码算法。主流的JPEG2000 ROI编码算法难以兼顾ROI质量和系统计算量,且在低码率编码时有完全丢失背景的隐患。该算法通过精确控制各子带中背景系数的精度,使ROI分配到更多码流。并引入了人眼视觉特性,使较少的背景码流产生尽量好的视觉效果。另外,根据该算法提出了针对矩形ROI的超大规模集成电路(VLSI)设计,此设计经过简单调整,亦可适用于主流的ROI编码算法。测试结果表明,该算法在ROI质量和重建图像视觉效果上均表现优异,且支持任意形状ROI编码,兼容JPEG2000协议。该VLSI设计仅使JPEG2000系统运行时间增加一个周期,具有极高的吞吐率,可满足实时处理要求。 To resolve the conflict between the amount of image data and the channel bandwidth, a Region Of Interest(ROI) coding method based on JPEG2000 is proposed in this paper. The mainstream methods for JPEG2000 ROI coding have a difficulty in balancing ROI quality and system computation, and have a hidden trouble in losing background completely at a low bit rate. The proposed method achieves ROI coding by precisely controlling the accuracy of background coefficients in each subband. The human visual property is introduced to obtain better visual effect with limited background codestream. Also, the Very Large Scale Integration(VLSI) design of the proposed method for the rectangle ROI is proposed. This design can be suitable for the mainstream ROI methods for JPEG2000 by some necessary adjustments. Experimental results show that the proposed method obtains an excellent performance in ROI quality and visual effect of the reconstructed images, supports arbitrary ROI shape coding, and is compatible with the standard. The VLSI design only adds one clock cycle on the coding time of JPEG2000 system, has a high throughput, and satisfies real-time applications.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第4期958-963,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61271058)~~
关键词 遥感图像 感兴趣区域编码 JPEG2000 人眼视觉特性 超大规模集成电路 Remote sensing image Region Of Interest(ROI) coding JPEG2000 Human visual property Very Large Scale Integration(VLSI)
  • 相关文献

参考文献26

  • 1储岳中,徐波,高有涛,邰伟鹏.基于近邻传播聚类与核匹配追踪的遥感图像目标识别方法[J].电子与信息学报,2014,36(12):2923-2928. 被引量:9
  • 2李晓博,孙文方,李立.静止轨道遥感卫星海面运动舰船快速检测方法[J].电子与信息学报,2015,37(8):1862-1867. 被引量:16
  • 3ISO/IEC.Information TechnologyJPEG2000 Image Coding System-Part 1:Core Coding System[S].2000.
  • 4CHRISTOPOULOS C,ASKELOF J,and MATHIAS L.Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard[J].IEEE Signal Processing Letters,2000,7(9):247-249.doi:10.1109/97.863146.
  • 5ISO/IEC.Information TechnologyJPEG2000 Image Coding System-Part 2:Extensions[S].2004.
  • 6WANG Zhou and BOVIK C.Bitplane-by-bitplane shift (BbBshift)A suggestion for JPEG2000 region of interest image coding[J].IEEE Signal Processing Letters,2002,9(5):160-162.doi:10.1109/LSP.2002.1009009.
  • 7WANG Zhou,BANERJEE S,EVANS L,et al.Generalized bitplane-by-bitplane shift (BbBShift) method for JPEG2000 ROI coding[C].Proceedings of International Conference on Image Processing,New York,2002,3:81-84.
  • 8LIU Lijie and FAN Guoliang.A new JPEG 2000 region of interest image coding method:partial significant bitplanes shift [J].IEEE Signal Processing Letters,2003,10(2):35-38.doi:10.1109/LSP.2002.807867.
  • 9TAUBMAN D and MARCELLIN M.JPEG2000 Image Compression Fundamentals,Standards and Practice[M].USA:Kluwer Academic Publishers,2001:639-641.
  • 10BARTRINA-RAPESTA J,AULI-LLNAS F,and SERRA-SAGRISTA J.JPEG2000 arbitrary ROI coding through rate-distortion optimization techniques[C].Data Compression Conference,Snowbird,2008:292-301.

二级参考文献34

  • 1李恒建,尹忠科,王建英.基于量子遗传优化算法的图像稀疏分解[J].西南交通大学学报,2007,42(1):19-23. 被引量:21
  • 2Pascal V and Yoshua B. Kernel matching pursuit[J]. MachineLearning, 2002, 48(1): 165-187.
  • 3Nguyen H V and Nasser M N. Design of non-linear kerneldictionaries for object recognition[J]. IEEE Transcations onImage Processing, 2013, 22(12): 5123-5135.
  • 4Ramin P, Hossein N Z, and Louis T. Auditory-inspired sparserepresentation of audio signals [J]. Speech Communication,2011,53(5): 643-657.
  • 5Adelino R and Sliva F D. Atomic decomposition withevolutionary pursuit [J]. Digitals Signal Processing' 2003,13(2): 317-337.
  • 6Kubo Y, Watanabe S, Nakamura A, et al" Basic vectororthogonalization for an improved kernel gradient matchingpursuit method[C]. 2012 IEEE International Conference onAcoustics, Speech and Signal Processing (ICASSP), Kyoto,Japan, 2012: 1909-1912.
  • 7Jiao L C and Li Q. Kernel matching pursuit classifierensemble [J]. Pattern Recognition, 2006,39(4): 587-594.
  • 8Zhao S L, Wu P, and Liu Y P. An online kernel learningalgorithm based on orthogonal matching pursuit [J], Journalof Software, 2012,7(9): 2076-2082.
  • 9Frey B J and Dueck D. Clustering by passing messagesbetween data points[J]. Science, 2007, 315(5814): 972-976.
  • 10Hou Biao, Chen Xing-zhong, and Jiao Li-cheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4): 811-815.

共引文献23

同被引文献46

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部