期刊文献+

Pareto-Beta跳扩散期权定价模型的校正 被引量:3

Calibration of Pareto-Beta jump-diffusion option pricing model
在线阅读 下载PDF
导出
摘要 为校正Pareto-Beta跳扩散期权定价模型,首先,利用Pareto-Beta跳扩散模型和双指数跳扩散模型之间的联系使模型参数减少,然后,通过使欧式期权价格和相应的市场价格之间的均方误差最小将模型校正问题转化为局部最优化问题,通过在均方误差项增加一个惩罚函数保证了解的存在性和唯一性.为了提高模型校正的效率,利用快速傅立叶变换方法计算欧式期权价格.最后,将模型和校正算法应用于S&P 500指数期权进行实证分析,数值结果显示,所提校正算法具有较好的稳定性. The purpose of this paper is to provide an efficient calibration algorithm of the Pareto-Beta jump-diffusion option pricing model. Firstly, the approach exploits the connection between the Pareto-Beta jump-diffusion model and the double exponential jump-diffusion model to reduce the number of parameter to be estimated. Then, the reduced model is calibrated by minimizing the square error between the European option price and the corresponding market price. Regularization by adding a penalty function to the square error term assures uniqueness and stability of the solution. European option price is calculated by fast Fourier transform method that helps greatly in the speed-up of the recursion. At last, the model and calibration algorithm are applied to the S&P 500 index options. Results show that the proposed calibration algorithm has better stability.
作者 张素梅
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2016年第9期998-1001,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金项目(11426176) 陕西省教育厅基金项目(14JK1672) 西安邮电大学青年教师基金项目(ZL2013-33)
关键词 模型校正 优化方法 期权定价 快速傅立叶变换 Pareto-Beta跳扩散模型 双指数跳扩散模型 model calibration optimization method option pricing fast Fourier transform Pareto-Beta jumpdiffusion model double exponential jump-diffusion model
  • 相关文献

参考文献13

  • 1PROTFER P.Stochastic integration and differential equations[M]. Springer- Verlag,New York.1991.
  • 2KOU S.A jump-diffusion model for option prieing[J].Management Science, 2002,48(8): 1086-1101.
  • 3SEPP A.Analyfical pricing of double-barrier options under a double-exponential jump diffusion process:Applications of Laplace transform[J].International Journal of Theoretical and Applied Finance, 2004,7(2): 151 - 175.
  • 4CAI Ni,CHEN N,WAN X W.Pricing double-barrier options under a flexible jump diffusion model[J].Operations Research Letters,2009,37(3): 163-167.
  • 5FUH C D,LUO S F,YEN J F.Pricing discrete path-dependent options under a double exponential jump-diffusion model[J].Joumal of Banking and Finanee,2013,37(8):2 702-2 713.
  • 6张素梅.随机利率下双指数跳扩散模型欧式期权定价[J].辽宁工程技术大学学报(自然科学版),2011,30(4):627-630. 被引量:5
  • 7ZI-IANG Sumei.European option pricing based on double exponential jump-diffusion process model with stochastic interest rate Liaoning Joumalof TechnicalUniversity(Natural Science),2011,30(4):627-630.
  • 8张素梅.跳扩散模型中随机利率和随机波动下期权定价[J].辽宁工程技术大学学报(自然科学版),2012,31(3):421-424. 被引量:2
  • 9ZHANG Sumei.Option pricing in jump-diffusion model with stochastic volatility and stochastic interest rate[J].Liaoning Journal of Technical University(Natural Science),2012,31(3):421-424.
  • 10CHANG J J,CHEN S N,WANG C C,et al.Barrier caps and floors under the LIBOR market model with double exponential jumps[J].Joumal of Derivatives,2014,21 (4): 7-30.

二级参考文献29

  • 1Black F, Scholes M. The pricing of options and corporate liabilities[J]. JournalofPoliticalEconomy, 1973, 81(3):637-654.
  • 2Merton R C. Option pricing when underlying process of stock returns is discontinuous[J]. Journal of Financial Economics, 1976, 3(1/2): 124- 144.
  • 3Mancini C. The European options hedge perfectly in a Poisson Gaussian stock market model [J]. Applied Mathematical Finance, 2002, 9(2): 87-102.
  • 4Duffle D, Pan J, Singleton K. Transform analysis and option pricing for affine jump-diffusions[J]. Econometrica, 2000, 68(6): 1 343-1 376.
  • 5Kou S. A jump-diffusion model for option pricing[J]. Management Science, 2002,48(8): 1 086-1 101.
  • 6Brace A, Gatarek D, Musiela M. The market model of interest rate dynamics[J]. Mathematical Finance, 1997, 7(2): 127-155.
  • 7Jamshidian F. LIBOR and swap market models and measures[J]. Finance and Stoehastics, 1997, 1(4): 293-330.
  • 8Miltersen K R, Sandmann K, Sondermann D. Closed-form solutions for term structure derivatives with lognormal interest rates[J]. J. Finance, 1997, 52(1): 409-430.
  • 9Michael Johannes. The statistical and economic role of jumps in continuous-time interest rate models[J]. The Journal of Finance, 2004, 59(1): 227-260.
  • 10Paul Glasserman, Kou S G. The term structure of simple forward rates with jump risk[J]. Mathematical Finance, 2003, 13(3): 383-410.

共引文献5

同被引文献12

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部