期刊文献+

SVR-PSO算法在慢走丝线切割参数优化中的应用 被引量:2

Application of SVR-PSO Algorithm in LSWEDM Parameters Optimization
在线阅读 下载PDF
导出
摘要 针对慢走丝线切割加工中难以同时获得较快加工速度和较优表面质量的问题,从其加工参数与加工指标之间的高非线性关系入手,选取水压、脉冲时间、脉冲宽度、峰值电流和进给速率作为优化参数,以表面粗糙度(Ra)、材料去除率(MRR)作为优化指标,设计正交实验;创新运用支持向量机(SVR)结合粒子群算法(PSO)建立其多目标预测优化模型,得到最优加工参数。结果表明:所建立的多目标预测优化模型优化效果十分显著,相同Ra下MRR平均提高32%;相同MRR下Ra同比下降25%。 In order to solve the problem of difficulty in achiving a higher material removal rate and a better surface integrity simultaneously,the highly nonlinear relationship between process parameters and machining performance was studied. A Taguchi experiment was designed with water pressure,pulse-on time,pulse-off time,peak current and feed rate as the main optimization parameters,surface roughness( Ra) and material removal rate( MRR) as the optimization targets. It was innovative to apply the support vector machines( SVR) and particle swarm algorithm( PSO) to acquire the optimized parameters combination by establishing a multi-objective model. The results show that the multi-objective optimization model is very efficient in increasing MRR and reducing Ra,by 32% and25% respectively under same conditions of Ra and MRR.
出处 《机床与液压》 北大核心 2016年第7期26-32,共7页 Machine Tool & Hydraulics
关键词 慢走丝线切割 参数优化 支持向量机 粒子群算法 多目标优化 LSWEDM Process parameters optimization Support vector machines Particle swarm algorithm Multi-objective optimization
  • 相关文献

参考文献4

二级参考文献41

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2刘向东,骆斌,陈兆乾.支持向量机最优模型选择的研究[J].计算机研究与发展,2005,42(4):576-581. 被引量:49
  • 3苏博,刘鲁,杨方廷.GM(1,N)灰色系统与BP神经网络方法的粮食产量预测比较研究[J].中国农业大学学报,2006,11(4):99-104. 被引量:48
  • 4叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 5易德生 郭萍.灰色理论与方法[M].北京:石油工业出版社,1992.73-74.
  • 6李冬庆,凡银生,李朝将,等.往复走丝电火花线切割加工工艺参数优化研究[C]//第14届全国特种加工学术会议论文集.哈尔滨:哈尔滨工业大学出版社.2011:211-218.
  • 7Patalia T P, Kulkarni G R. Behavioral analysis of genetic algorithm for function optimization[C]//Proceedings of the 2010 IEEE International Conference on Computational Intel- ligence and Computing Research (ICCIC '10), Coimbatore, India, 2010: 1-5.
  • 8Holland J H. Outline for a logical theory of adaptive sys- tems[J]. Journal of the ACM, 1962, 9(3): 297-314.
  • 9Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(4): 656-667.
  • 10Zhang Jun, Chung H S H, Hu B J. Adaptive probabilities of crossover and mutation in genetic algorithms based on clus- tering technique[C]//Proceedings of the IEEE Congress on Evolutionary Computation (CEC '04), 2004, 2: 2280-2287.

共引文献120

同被引文献29

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部