期刊文献+

基于LS-SVM的位置指纹室内定位 被引量:15

Location fingerprints based indoor positioning using least squares support vector machines
在线阅读 下载PDF
导出
摘要 基于无线接入点(Access Point,AP)接收信号强度(Received Signal Strength,RSS)的位置指纹室内定位技术近几年已经成为国内外位置感知研究的热点。提出了基于最小二乘支持向量机(Least Squares Support Vector Machines,LS-SVM)的位置指纹定位方法。给出了基于LS-SVM的指纹定位模型,描述了LS-SVM指纹样本训练的具体实现过程。重点在于将定位问题转化为一个多类别分类问题,并分别采用一对一(OAO)和一对多(OAA)方法将其转化为多个二值分类问题。仿真结果表明,LS-SVM较传统支持向量机(SVMs)、K近邻(k-Nearest Neighbors,K-NN)定位方法的分类准确率高且计算代价小,平均分类准确率达92.00%。 Location fingerprints based indoor positioning, which uses wireless AP Received Signal Strength(RSS), has become a popular research topic during the last a few years. Least Squares Support Vector Machines(LS-SVMs)based fingerprint-positioning is proposed in this paper. First, fingerprint based indoor positioning by LS-SVMs is given. Then,the detailed LS-SVM training process of fingerprinting samples is described. It focuses on how to transfer the positioning problem to a multi-class classification problem, which is handled by One-Against-One(OAO) and One-Against-All(OAA) approach respectively. Simulation results show that the proposed method has higher accuracy(average of92.00%)and lower computational cost compared with traditional Support Vector Machines(SVMs)and k-Nearest Neighbors(K-NNs).
出处 《计算机工程与应用》 CSCD 北大核心 2016年第9期122-125,153,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61100140 No.61104210) 省重点学科建设项目资助
关键词 位置指纹 最小二乘支持向量 室内定位 location fingerprints Least Squares Support Vector Machine(LS-SVM) indoor positioning
  • 相关文献

参考文献15

  • 1Ni L M,Liu Y,Lau Y C,et al.LANDMARC:indoor location sensing using active RFID[J].Wireless Network,2004,10(6):701-710.
  • 2Honkavirta V,Perala T,Ali-Loytty S,et al.A comparative survey of WLAN location fingerprinting methods[C]//6th Workshop on Navigation&Communication,2009:243-251.
  • 3Kaemarungsi K,Krishnamurthy P.Analysis of WLAN’s received signal strength indication for indoor location fingerprinting[J].Pervasive&Mobile Computing,2012,8(2):292-316.
  • 4石为人,熊志广,许磊.一种用于室内人员定位的RSSI定位算法[J].计算机工程与应用,2010,46(17):232-235. 被引量:42
  • 5程健,陈光昀,龚平华,朱小强.非线性多维时间序列模式分类的新方法[J].计算机工程与应用,2011,47(32):128-131. 被引量:2
  • 6Mautz R.Overview of current indoor positioning systems[J].Geodezijair Kartografija,2009,35(1):18-22.
  • 7Figuera C,Rojo-álvarez J L,Wilby M,et al.Advanced support vector machines for 802.11 indoor location[J].Signal Processing,2012,92(9):2126-2136.
  • 8Vapnik V,Vashist A.A new learning paradigm:learning using privileged information[J].Neural Networks,2009,22(5):544-557.
  • 9Ouyang R W,Wong A K S,Woo K T.Indoor localization via discriminatively regularized least square classification[J].International Journal of Wireless Information Networks,2011,18(2):57-72.
  • 10Sengur A.Multiclass least-squares support vector machines for analog modulation classification[J].Expert Systems with Applications,2009,36(3):6681-6685.

二级参考文献50

  • 1孔锐,张国宣,施泽生,郭立.基于核的K-均值聚类[J].计算机工程,2004,30(11):12-13. 被引量:46
  • 2张敏贵,潘泉,张洪才,姜睿.基于支持向量机的人脸分类[J].计算机工程,2004,30(11):110-112. 被引量:16
  • 3陈伏兵,韦相和,陈秀宏,杨静宇.人脸识别中基于核的子空间鉴别分析[J].中国图象图形学报,2006,11(9):1242-1248. 被引量:7
  • 4Suykens J A K,Van Gestel T,De Brabanter J.Least squares support vector machines[M].Singapore: World Scientific,2002.
  • 5Zheng Chun-hong,Jiao Li-cheng.Automatic parameters selection for SVM based on GA[C]//Proc of the 5th World Congress on Intelligent Control and Automation.Piscataway,NJ:IEEE Press,2004 : 1869-1872.
  • 6Huang C L,Wang C J.A GA based feature selection and parameters optimization for support vector machines[J].Expert Systems with Applications, 2006,31 ( 2 ) : 231-240.
  • 7Wang Ling,Yu Jin-shou.Fauh feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis[C]//LNCS3612 : ICNC2005,2005 : 832-840.
  • 8Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks.USA :IEEE Press, 1995 : 1942-1948.
  • 9Smola A J.Learning with kernels[D].Berlin:Technical University of Berlin, 1998.
  • 10Wang Ling,Yu Jin-shou.Fauh feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis[C]//ICNC,2005:832-840.

共引文献72

同被引文献118

引证文献15

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部