期刊文献+

工字形焊件中体积型缺陷的修补与细化算法研究

Research on Repairing and Thinning Algorithm for Volume Style Defects in I Style Weldments
在线阅读 下载PDF
导出
摘要 为了实现焊件内部缺陷空间位置数据的快速自动提取,研究了工字形焊件中批量体积型缺陷的修补与细化算法问题。提出了焊件中体积型缺陷修补与细化的算法流程,并详细阐述了其具体实现过程。应用提出的修补与细化算法对检测图像进行了处理,并采用剖切试件的方法对处理结果进行了验证。试验结果表明,本文提出的缺陷修补与细化算法是可行的。 In order to achieve the fast automatic extraction of spatial locating data of defects in weldments, the repairing and thinning algorithms of bulk volume style defects were studied. The algorithm flowchart of repairing and thinning for volume style defect was put forward, and the concrete realization process was expounded. The provided algorithm was adopted to process the detection images, and the verification was proceeded by using destructive testing. The results show that the provided algorithm of repairing and thinning in the research is feasible.
出处 《热加工工艺》 CSCD 北大核心 2016年第9期187-189,共3页 Hot Working Technology
基金 江苏省自然科学基金面上项目(BK20141143) 江苏省高校自然科学基金项目(12KJD430003)
关键词 工字形焊件 体积型缺陷 修补算法 细化算法 I style weldments volume style defects repairing algorithm thinning algorithm
  • 相关文献

参考文献6

二级参考文献20

  • 1邾继贵,刘常杰,叶声华.无缝钢管视觉检测系统现场标定技术研究[J].光电子.激光,2005,16(5):588-590. 被引量:4
  • 2蔡晋辉,张光新,周泽魁.基于立体视觉的杂质检测方法设计[J].光电子.激光,2005,16(12):1467-1471. 被引量:10
  • 3罗爱民,殷国富,魏万迎.基于自适应形态学滤波算法的X射线图像的缺陷提取[J].核动力工程,2006,27(6):47-51. 被引量:2
  • 4Kaftandjian V, Joly A, Odievre T, et al. Automatic Detection and Characterization of Aluminum Weld De fects: Comparison between Radiography, Radioscopy and Human Interpretation [C]//Proceedings of the Seventh European Conferences on Nondestructive Testing. Copenhagen, 1998 : 1179-86,.
  • 5Mery D, Jaeger T,Filbert D. A Review of Methods for Automated Recognition of Casting Defects [J]. Insight,2002, 44(7) :428-436.
  • 6Mery D, Filbert D. Automated Flaw Detection in Aluminium Castings Based on the Tracking of Potential Defects in a Radioscopic Image Sequence[J]. IEEE Transactions on Robotics and Automation, 2002, 18 (6) :890-901.
  • 7Quan Jinjuan, Wen Xianbin, Wang Chundong, et al. Multiscale Segmentation of SAR Images Via Two Neural Networks[J]. Journal of Optoeleetronies · Laser, 2008,19(4) :542-545.
  • 8Sun Y, Bei P, Sun H Y, et at. Real--time Automatic Detection of Weld Defects in Steel Pipe[J]. NDT&E International, 2005,38 (7): 522-528.
  • 9Shi Duanhu, Gang Tie, Yang Shuangyang, et al. Research on Segmentation and Distribution Features of Small Defects in Precision Weldments with Complex Structure[J]. NDT&E International, 2007, 40(5) :397 -404.
  • 10Akira Matsunawa, Naoki Seto, Jong-Do Kim, et al. Dynamics of keyhole and molten pool in high power CO2 laser welding[A]. Proceedings of NDT data fusion at pixel level[C]. Osaka, Japan, 2000. 34-45.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部