期刊文献+

嗜热微生物及在高温生物冶金过程中的应用 被引量:7

Thermophiles and their application in high temperature-biomining processes
原文传递
导出
摘要 嗜热微生物包括中度嗜热微生物和极端嗜热微生物,主要栖息于热泉、火山口、海底热液喷口、高温反应器以及工厂高温废水排放区等自然或人为产生的高温环境中。它们可以生活在40-80°C、甚至更高的温度中,其中有些具备嗜酸性及特殊的代谢类型,在高温生物冶金过程中具有应用潜力。高温生物冶金较传统中温生物冶金更具优势,其能浸出某些难处理矿、解决浸矿过程的钝化问题,以及提高浸出效率等,目前已引起了生物冶金工业的重视。本文概述了应用于生物冶金的主要嗜热微生物的生理特点、耐热机制以及对铁、铜和砷等离子的耐受机制,进一步介绍了嗜热微生物在高温生物冶金中的发展及应用。 Thermophiles, including moderate thermophiles and extreme thermophiles, mainly survive in natural geothermal environments, such as hot springs, volcanic vents and submarine hydrothermal vents, and artificial high temperature environments like reactors or wastewater discharge ports with high temperature. Thermophiles can grow at temperature of 40-80 ℃ and above. Many of them areacidophilic and have specific metabolism types, which endow them to be used into the high temperature-biomining processes. Biomining processes under high temperature show more advantages than traditional mesothermal biomining process, which can effectively leach out some of the refractory primary sulfide minerals, resolve passivation problem, therefore improve leaching rate. In this review, we summarized the physiological characteristics of main thermophiles used in biomining processes and their resistance mechanisms on high temperature, iron, copper, arsenic and other ions, furthermore, the developments and applications of thermophiles in biomining technology were presented.
出处 《微生物学通报》 CAS CSCD 北大核心 2016年第5期1101-1112,共12页 Microbiology China
基金 国家重点基础研究发展规划项目(973计划)(No.2014CB846002) 国家自然科学基金项目(No.31171234) 西安医学院博士科研启动基金项目(No.2015D0C04)~~
关键词 嗜热微生物 生物冶金 高温生物冶金 耐热机制 金属耐受机制 Thermophiles, Biomining, High temperature-biomining, Heat resistance mechanism,Metal tolerance mechanism
  • 相关文献

参考文献85

  • 1Rawlings DE, Johnson DB. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia[J]. Microbiology, 2007, 153(2): 315-324.
  • 2陈勃伟,温建康,刘文彦.浸矿微生物鉴定研究进展[J].中国矿业,2007,16(9):103-106. 被引量:5
  • 3Rohwerder T, Gehrke T, Kinzler K, et al. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248.
  • 4Rawlings DE, Dew D, du Plessis C. Biomineralization of metal-containing ores and concentrates[J]. Trends in Biotechnology, 2003, 21 (1): 38-44.
  • 5Johnson DB. Biomining-biotechnologies for extracting and recovering metals from ores and waste materials[J]. Current Opinion in Biotechnology, 2014, 30:24-31.
  • 6Urbieta MS, Donati ER, Chan KG, et al. Thermophiles in the genomic era: biodiversity, science, and applications[J].Biotechnology Advances, 2015,33(6):633-647.
  • 7Rastogi G, Bhalla A, Adhikari A, et al. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains[J]. Bioresource Technology, 2010, 101 (22): 8798-8806.
  • 8Dopson M, Johnson DB. Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms[J]. Environmental Microbiology, 2012, 14(10): 2620-2631.
  • 9Zhou QG, Bo F, Bo ZH, et al. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite[J]. World Journal of Microbiology and Biotechnology, 2007, 23(9): 1217-1225.
  • 10Kelly DP,Vood AP." Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(2): 511-516.

二级参考文献68

共引文献36

同被引文献86

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部