期刊文献+

大西洋经向翻转环流的模拟对海表驱动场时间和空间分辨率的敏感性分析

Sensitivity of AMOC Numerical Simulation to Spatio-temporal Resolution of Atmospheric Forcing Field
在线阅读 下载PDF
导出
摘要 基于全球海洋-海冰耦合数值模式,研究了不同时间和空间分辨率的海表驱动场对大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,AMOC)和海表面温度(Sea Surface Temperature,SST)模拟的影响。敏感性数值实验结果表明,海表驱动场时间和空间分辨率的不同不仅会影响SST的模拟,而且会显著影响AMOC强度的模拟。相比高时间分辨率的海表驱动场,时间和空间分辨率的降低会造成AMOC模拟强度的减弱和SST的升高。月平均驱动场驱动的AMOC比6h分辨率驱动场驱动的控制实验减少6.7Sv,降低了34%;同为6h分辨率,粗空间分辨率大气驱动场模拟的AMOC比高空间分辨率实验减少1.4Sv,降低了7%。对海洋上层流场和海表热通量进一步分析表明,低时间和空间分辨率的海表风场的减弱是导致AMOC减弱和SST升高的主要原因。 Based on a global ocean-ice coupled numerical model,we study the impact of different spatiotemporal resolutions of atmospheric forcing fields on the numerical simulation of AMOC(Atlantic meridional overturning circulation)and SST(sea surface temperature).Sensitivity experiments show that spatiotemporal resolution of atmospheric forcing field can significantly influence both SST and AMOC.Compared with control run(6hourly),coarser spatio-temporal forcing field lead to weaker AMOC and warmer SST.AMOC index in monthly forcing field experiment decreased by 6.7Sv(34%lower)with respect to experiment with 6hourly forcing field.In 6hourly forcing field runs,AMOC index of coarser spatial resolution decreased by 1.4Sv than that of finer spatial resolution.Analysis of upper ocean current and sea surface heat flux indicate that coarser spatio-temporal forcing field can result in weakening of sea surface winds,which is the major cause of weaker AMOC and warmer SST.
出处 《海洋科学进展》 CAS CSCD 北大核心 2016年第2期175-185,共11页 Advances in Marine Science
基金 国家自然科学基金委员会-山东省人民政府联合资助海洋科学研究中心项目--海洋环境动力学和数值(U1406404) 全球变化与海气相互作用专项--海洋动力系统和多运动形态相互作用(GASI-03-IPOVAI-05) 南北极环境综合考察与评估专项--极地对全球和我国气候变化影响的综合评价项目(CHINARE2016-04-04)
关键词 海洋数值模拟 海洋-海冰耦合数值模式 海表驱动场 大西洋经向翻转环流 numerical simulation global ocean-ice coupled model atmospheric forcing field Atlantic meridional overturning circulation
  • 相关文献

参考文献17

  • 1GRIFFIES S M, BIASTOCH A, BONING C, et al. Coordinated ocean-ice reference experiments (COREs)I-J]. Ocean Modelling, 2009, 26(1): 1-46.
  • 2BRYDEN H L, LONGWORTH H R, CUNNINGHAM S A. Slowing of the Atlantic meridional overturning circulation at 25 N[J]. Na- ture, 2005, 438(7068) : 655-657.
  • 3DANABASOGLU G, YEAGER S G, BAILEY D, et al. North Atlantic simulations in coordinated ocean-ice reference experiments phase II (CORE-II). Part I: mean statesl-J]. Ocean Modelling, 2014, 73(1) : 76-107.
  • 4俞永强,宋毅.海洋环流对全球增暖趋势的调制:基于FGOALS-s2的数值模拟研究[J].大气科学,2013,27(2):395-410. 被引量:4
  • 5DELWORTH T L, ROSATI A, ANDERSON W, et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution cou- pled climate model[J]. Journal of Climate, 2012, 25(8): 2755-2781.
  • 6The U S AMOC science team, Second annual progress report for a JSOST near-term priority assessing meridional overturning circulation variability implications for rapid climate change[R]. Washington, DC :U S CLIVAR Office, 2009.
  • 7CONDRON A, RENFREW I A, The impact of polar mesoseale storms on northeast Atlantic Ocean circulation[J]. Nature Geoscience, 2013, 6(1): 34-37.
  • 8BEENA B S, VON STORCH J S, Effects of fluctuating daily surface fluxes on the time-mean oceanic circulation[J]. Climate dynamics, 2009, 33(1): 1-18.
  • 9PICKART R S, SPALL M A, RIBERGAARD M H, et al. Deep convection in the Irminger Sea forced by the Greenland tip jet[J]. Na- ture, 2003,424(6945) : 152-156.
  • 10LARGE W, YEAGER S. The global climatology of an interannually varying air sea flux data set[J]. Climate Dynamics, 2009, 33(2-3) : 341-364.

二级参考文献15

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部