期刊文献+

一类二阶离散哈密顿系统周期解的存在性

Existence of periodic solutions for a class of second-order discrete Hamiltonian systems
原文传递
导出
摘要 利用临界点理论中的极大极小方法,在一个新的二次条件下研究了一类二阶离散哈密顿系统周期解的存在性问题,得到了一个新的存在性定理. Using the minimax methods in critical point theory,this paper concerns about the existence of periodic solutions for a class of second-order discrete Hamiltonian systems under a new quadratic condition.A new existence theorem is obtained.
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2016年第1期13-17,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(11026213 11571176)
关键词 离散哈密顿系统 周期解 鞍点定理 二次条件 discrete Hamiltonian systems periodic solutions saddle point theorem quadratic condition
  • 相关文献

参考文献10

  • 1慎闯,何延生,侯成敏.一类有序分数阶差分方程解的存在性[J].扬州大学学报(自然科学版),2013,16(1):12-16. 被引量:5
  • 2郭志明,庾建设.二阶超线性差分方程周期解与次调和解的存在性[J].中国科学(A辑),2003,33(3):226-235. 被引量:31
  • 3XUE Yanfang, TANG Chunlei. Existence of a periodic solution for subquadratic second-order discrete Hamilto-nian system [J], Nonlinear Anal, 2007,67(7) : 2072-2080.
  • 4DENG Xiaoqing, SHI Haiping, XIE Xiaoliang. Periodic solutions of second order discrete Hamiltonian systemswith potential indefinite in sign [J]. Appl Math Comput, 2011,218(1) : 148-156.
  • 5YE Yiwei,TANG Chunlei. Periodic solutions for second-order discrete Hamiltonian system with a change ofsign in potential [J]. Appl Math Comput,2013, 219(12) : 6548-6555.
  • 6RABINOWITZ P H. On subharmonic solutions of Hamiltonian systems [J]. Comm Pure Appl Math, 1980,33(5): 609-633.
  • 7张申贵.一类非自治离散Hamiltonian系统的周期解[J].徐州师范大学学报(自然科学版),2011,29(1):31-34. 被引量:1
  • 8WANG Zhiyong, XIAO Jianzhong. On periodic solutions of subquadratic second order non-autonomous Hamilto-nian systems [J]. Appl Math Lett, 2015,40: 72-77.
  • 9ZHANG Zhitao. Variational,topological, and partial order methods with their applications [M]. Heidelberg:Springer, 2013 : 6-100.
  • 10SCHECHTER M. Linking methods in critical point theory [M]. Boston MA: Birkhauser Boston,2012 : 100-120.

二级参考文献40

  • 1Bin Honghua, Yu Jianshe,Guo Zhiming. Nontrivial periodic solutions for asymptotically linear resonant difference problem [J]. J Math Anal Appl,2006,68(2) :419.
  • 2Deng Xiaoqing. Periodic solutions for a class of subquadratic discrete Hamiltonian systems[J]. Adv in Diff Equa, 2007,28 (12):1.
  • 3Xue Yanfang,Tang Chunlei. Existence of a periodic solutions for subquadratic second order discrete Hamiltonian systems [J]. Nonlinear Anal, 2007,67 (7) : 2072.
  • 4Zhao Fukun,Wu Xian. Existence of periodic solutions for non-autonomous second order systems with linear nonlinearity [J]. Nonlinear Anal, 2005,60(7) : 325.
  • 5Hale J K, Mawhin J. Coincidence degree and periodic solutions of neutral equations. J Differential Equations,1974, 15:295-307.
  • 6Elaydi S N. An Introduction to Difference Equations. New York: Springer-Verlag, 1999.
  • 7Pielou E C. An Introduction to Mathematical Ecology. New York: Willey Interscience, 1969.
  • 8Palais R S, Smale S. A generalized Morse theory. Bull Amer Math Soc, 1964(70): 165-171.
  • 9Michalek R, Tarantello G. Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J Differential Equations, 1988, 72:28-55.
  • 10Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations.CRMS AMS. 1986. 65:7-18.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部