期刊文献+

Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture 被引量:8

Linking nutrient strategies with plant size along a grazing gradient: Evidence from Leymus chinensis in a natural pasture
在线阅读 下载PDF
导出
摘要 St udying the changes in nutrient use strategies induced by grazing can provide insight into the process of grassland degradation and is important for improving grassland quality and enhancing ecosystem function. Dominant species in meadow steppe can optimize their use of limiting resources; however, the regulation of nutrient use strategies across grazing gradients is not fully understood. Therefore, in this study, we report an in situ study in which the impact of grazing rates on nutrient use strategies of Leymus chinensis, the dominant plant species in eastern Eurasian temperate steppes, was investigated. We conducted a large randomized controlled experiment(conducted continuously for five years in grassland plots in a natural pasture in Ha ilar, eastern Mongolia Plateau, China) to assess the effects of grazing rate treatments(0.00, 0.23, 0.34, 0.46, 0.69, and 0.92 adult cattle unit(AU) ha-1) on L. chinensis along a grazing gradient and employed a random sampling approach to compare the accumulation, allocation, and stoichiometry of C, N, and P in leaves and stems. Ou r findings demonstrated the follows:(i) The height of L. chinensis decreased with an increase in the grazing gradient, and the concentrations of C, N, and P significantly increased;(ii) the accumulation of C, N, and P per individual was negatively correlated with the concentration of aboveground tissues, suggesting that there was a tradeoff in L. chinensis between nutrient accumulation and concentration at the individual scale;(iii) the leaf-to-stem ratio of C, N, and P accumulation increased with grazing intensity, indicating a tradeoff in nutrient allocation and plant size at the individual plant level; and(iv) grazing rates were negatively correlated with the ratios of C:N and C:P in the stem; however, these ratios in leaves significantly increased with grazing intensity. Our findings suggest that L. chinensis in meadow steppe adapts to grazing disturbance through tradeoffs between plant size and nutrient use strategies. Moreover, our results imply that grazing produces a compensatory effect on nutrient use efficiency between the stems and leaves of L. chinensis. St udying the changes in nutrient use strategies induced by grazing can provide insight into the process of grassland degradation and is important for improving grassland quality and enhancing ecosystem function. Dominant species in meadow steppe can optimize their use of limiting resources; however, the regulation of nutrient use strategies across grazing gradients is not fully understood. Therefore, in this study, we report an in situ study in which the impact of grazing rates on nutrient use strategies of Leymus chinensis, the dominant plant species in eastern Eurasian temperate steppes, was investigated. We conducted a large randomized controlled experiment(conducted continuously for five years in grassland plots in a natural pasture in Ha ilar, eastern Mongolia Plateau, China) to assess the effects of grazing rate treatments(0.00, 0.23, 0.34, 0.46, 0.69, and 0.92 adult cattle unit(AU) ha-1) on L. chinensis along a grazing gradient and employed a random sampling approach to compare the accumulation, allocation, and stoichiometry of C, N, and P in leaves and stems. Ou r findings demonstrated the follows:(i) The height of L. chinensis decreased with an increase in the grazing gradient, and the concentrations of C, N, and P significantly increased;(ii) the accumulation of C, N, and P per individual was negatively correlated with the concentration of aboveground tissues, suggesting that there was a tradeoff in L. chinensis between nutrient accumulation and concentration at the individual scale;(iii) the leaf-to-stem ratio of C, N, and P accumulation increased with grazing intensity, indicating a tradeoff in nutrient allocation and plant size at the individual plant level; and(iv) grazing rates were negatively correlated with the ratios of C:N and C:P in the stem; however, these ratios in leaves significantly increased with grazing intensity. Our findings suggest that L. chinensis in meadow steppe adapts to grazing disturbance through tradeoffs between plant size and nutrient use strategies. Moreover, our results imply that grazing produces a compensatory effect on nutrient use efficiency between the stems and leaves of L. chinensis.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第5期1132-1144,共13页 农业科学学报(英文版)
基金 supported by the National Basic Research Program of China (2014CB138806) the International Science and Technology Cooperation Project of China (2013DFR30760) the Natural Science Foundation Committee of Inner Mongolia, China (ZD201502) the Basic Research Funding Project of Institute of Grassland Research, Chinese Academy of Agricultural Sciences (1610332015005)
关键词 meadow steppe nutrient-use strategy OVERGRAZING STOICHIOMETRY Inner Mongolia Leymus chinensis meadow steppe, nutrient-use strategy, overgrazing, stoichiometry, Inner Mongolia, Leymus chinensis
  • 相关文献

参考文献4

二级参考文献67

共引文献89

同被引文献90

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部