期刊文献+

基于循环中国剩余定理和改进PEG算法的IRA码

IRA codes based on cyclic Chinese remainder theorem and improved PEG algorithm
在线阅读 下载PDF
导出
摘要 为了避免交织器产生的时延,通过改进的渐进边增长(PEG)算法和循环中国剩余定理构造了一种不规则重复累积(IRA)码。与常规的IRA码相比,提出的码字具有半随机半结构化形式,不需要设计交织器,且码长选择更加灵活。仿真结果显示,在码率为1/2的条件下,当误码率为10-6时,构造的IRA(1 000,500)码与PEG-IRA(1 000,500)码和基于剩余类数对的IRA(1 000,500)码相比,在对应的相同条件下分别取得了0.2 d B和0.1 d B左右的净编码增益提升;且在码率为3/4时,所构造的IRA(16 200,11 880)码比相同码长和码率的DVB-S2标准LDPC码净编码增益提高了约0.1 d B左右。 In order to avoid the delay generated by the interleaver, a kind of irregular repeat accumulation (IRA) code is built by the improved progressive edge growth (PEG) algorithm and the cyclic Chinese remainder theorem. Compared with regular IRA codes, the proposed code has the quasi-randomized and semi-structured forms, and does not need to design the interleaver, and the code length selection is more flexible. The simulation results show that when the bit error rate is 104, the net coding gain (NCG) of the proposed IRA( 1 000,500) code with the code rate of 1/2 is about 0.2 dB and 0.1 dB higher than those of the PEG-IRA( 1 000,500) code and the IRA( 1 000,500) code based on residue class respectively. In addition, the NCG of the proposed IRA( 16 200, 11 880) code is about 0.1 dB more than that of the DVB-S2 standard LDPC code with the same conditions correspondingly with the code rate of 3/4 and the bit error rate(BER) of 10^-6.
出处 《电视技术》 北大核心 2016年第5期36-39,47,共5页 Video Engineering
基金 国家自然科学基金项目(61571072) 重庆市基础与前沿研究计划项目(cstc2015jcyj A40015)
关键词 PEG算法 中国剩余定理 不规则重复累积码 净编码增益 PEG algorithm CRT IRA code NCG
  • 相关文献

参考文献13

  • 1GALLAGER R. Low-density parity-check codes[ J]. IRE transactions on information theory, 1962,8 ( 1 ) : 21 -28.
  • 2范文同,马林华,林志国,邹浩彦,田雨.一类环长至少为10的准循环LDPC码[J].电视技术,2015,39(19):59-62. 被引量:1
  • 3FOSSORIER M P C, M1HALJEVIC M, INAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[ J]. IEEE transactions on communications, 1999,47 ( 5 ) : 673 -680.
  • 4CHUANG S Y, FORNEY Jr G D, RICHARDSON T J,et al. On the design of low-density parity-check codes within 0. 0045 dB of the Shannon limit [ J ]. IEEE communications letters, 2001,5 ( 2 ) : 58-60.
  • 5JIN H. Analysis and design of turbo-like codes[ D]. Cali- fornia : California Institute of Technology,2001.
  • 6鹿增辉,方勇,霍迎秋.基于滑窗置信传播算法的联合信源信道编码[J].电视技术,2015,39(11):99-103. 被引量:1
  • 7YANG M, RYAN W E, LI Y. Design of efficiently encod- able moderate-length high-rate irregular LDPC codes[ J]. IEEE transactions on communications, 2004,52 ( 3 ) : 564- 571.
  • 8CHEN P J,ZHU L X, HU Q, et al. PEG algorithm based in- terleavers design for systematic IRA codes[ C]//Proc. 8th International Symposium on Antennas, Propagation and EM Theory ( ISAPE). Kunming : IEEE,2008 : 1458-1461.
  • 9彭立,朱光喜,吴晓晓.基于等差数列的LDPC码编码器设计[J].电子学报,2007,35(5):950-954. 被引量:5
  • 10彭立,张琦,王渤,陈涛.针对IRA-LDPC码类的半随机半代数结构设计[J].通信学报,2014,35(3):77-84. 被引量:3

二级参考文献47

  • 1彭立,朱光喜.基于Q-矩阵的LDPC码编码器设计[J].电子学报,2005,33(10):1734-1740. 被引量:16
  • 2余华,曹维娜,赵力.信源信道联合编码技术用于AVS传输的研究[J].电视技术,2007,31(8):9-10. 被引量:3
  • 3王新梅 肖国镇.纠错码-原理与方法[M].西安:西安电子科技大学出版社,2001..
  • 4R M Tanner,D Sridhara,A Sridharan,T E Fuja,D J Costello.LDPC Block and convolutional codes based on circulant matrices[J].IEEE Trans Info Theory,2004,50(12):2966-2984.
  • 5M P Fossorier.Quasi-cyclic low-density parity-check codes from circulant permutation matrices[J].IEEE Trans Info Theory,2004,50(8):1788-1793.
  • 6T Richardson,R Urbanke.Efficient encoding of low-density parity-check codes[J].IEEE Tran Info Theory,2001,47(2):638-656.
  • 7IEEE Std 802.16e-2005[S].Approved 7 December 2005.Publishing 28 February,2006.
  • 8R G Gallager.Low Density Parity Check Codes[D].Massachusetts Institute of Technology,Cambridge,MA,1960.
  • 9R Echard,S C Chang.The -rotation low-density parity check codes[A].IEEE Global Telecommunications Conference[C].GLOBECOM'01-2:2001.980-984.
  • 10Li Ping,W K Leung,Nam Phamdo.Low density parity check codes with semi-random parity check matrix[J].Electronics Letters,1999,35(1):38-39.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部