期刊文献+

细芯光纤M-Z干涉传感器多参数测量研究 被引量:4

Thin-core fiber M-Z interferometer sensor for multi-parameter measurement
原文传递
导出
摘要 实验制备了基于细芯光纤(TCF)的马赫-曾德尔干涉仪(MZI)并进行了多参数测量传感研究。传感器采用两段单模光纤(SMF)进行腰椎放大连接细芯光纤,形成MZI结构。利用TCF与SMF的纤芯直径不匹配,在第1个接点激发出包层模式,包层模在第2个接点耦合进纤芯与纤芯模产生干涉,利用干涉条纹的波长漂移实现对外界环境参量的测量。实验所用的TCF纤芯的掺Ge浓度较高(约为38mol.%),相对折射率和热光系数较普通SMF大,所以在保证适当的自由光谱范围(FSR)的前提下,TCF的长可以减小到2 mm,传感头尺寸较小,且传感结构对于温度的变化十分敏感。实验结果表明,在30~250℃的温度范围内,其温度灵敏度为70.2pm/℃,并具有较好的线性响应度。测试了传感器对折射率、应变和弯曲的响应,获得的灵敏度分别为-8.12nm/RIU、1.8pm/με和2.07nm/m-1。 A Mach-Zehnder interferometer (MZI) based on thin-core fiber is experimentally demonstrated and used for measurement of temperature, strain, surrounding refractive index and bending. The thin-core fiber (TCF) was sandwiched between two single mode fibers (SMFs) through two waist-enlarged bita- pers to form an MZI. Due to the core diameter mismatching between the two fibers,cladding modes are excited at the first splicing point and then coupled into the fiber core at the second splicing point to gen- erate interference. Wavelength shift of the interference fringes was used to measure the change of ambi- ent parameters. Since the core of the TCF contains Germania with mode percent of 38 ~,it has a rela- tively higher differential refractive index and higher thermal-optic coefficient compared with normal fi- bers. As a result,by ensuring an appropriate free spectral range (FSR) ,relatively short length of sensing fiber (2 ram) and relatively higher temperature sensitivity can be expected. Experimental results show that the temperature sensitivity is up to 70. 2 pm/℃ in a range from 30℃ to 250℃. The sensor responses to refractive index, strain and bending were also measured, and the achieved sensitivities are -8. 12 nm/RIU,1.8 pm/με and 2. 07 nm/m^-1 ,respectively.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2016年第6期587-592,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61475147) 浙江省自然科学基金(Z13F050003) 中国科学院天文光学技术重点实验室开放课题基金资助项目
关键词 光纤传感 细芯光纤(TCF) 多参数测量 腰椎放大熔接 optical fiber sensing thin-core fibers (TCF) multi-parameter measurement waist-enlarged fusion splicing
  • 相关文献

参考文献24

  • 1Saurabh Mani Tripathi,Arun Kumar,Ravi K.Varshney,et al.Strain and temperature sensing characteristics of single mode-multimode-single mode structures[J].Journal of Lightwave Technology,2009,27(13):2348-2356.
  • 2童峥嵘,杨娇,曹晔,苏军.基于腐蚀型多模光纤的干涉型传感器实现温度和液位同时测量[J].光电子.激光,2014,25(1):118-122. 被引量:14
  • 3LI Chao,NING Ti-gang,WEN Xiao-dong, et al.Magnetic field and temperature sensor based on a no-core fiber combined with a fiber Bragg grating [J].Optics & La ser Technology,2015,72:104-107.
  • 4CAO Zhi-gang,ZHANG Zhao,JI Xiao-chun,et al.Strain-insensitiv e and high temperature fiber sensor based on a Mach-Zehnder modal Interferometer[J].Optical Fiber Technology,2014,20:24-27.
  • 5TIAN Zhao-bing,Yam S H,Barnes J,et al.Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers[J].Photonics Technology Letters,2008,20(8):626-628.
  • 6YAO Qi-qi,MENG Hong-yun,WANG Wei,et al.Simultaneous measurement of refractive index and temperature based on a core-offset Mach-Zehnder interferometer combined with a fiber Bragg grating[J].Sensors and Actuators,2014,209: 73-77.
  • 7张芸山,乔学光,邵敏,李辉栋,傅海威,荣强周,赵娜.基于光纤锥和多模渐变光纤的马赫-曾德尔干涉仪的传感特性研究[J].光电子.激光,2014,25(9):1662-1667. 被引量:6
  • 8DONG Shao-hua,PU Sheng-li,WANG Hao-tian.Magnetic field sensi ng based on magneti -c-fluidclad fiber-optic structure with taper-like and lateral-offset fusion splicing[J].Optics Express,22(16):19108-19116.
  • 9GENG You-feng, LI Xue-jin, TAN Xiao-ling, et al.Highly-sensit ivity Mach-Zehnder interfe -rometric temperature fiber sensor based on a waist-enlarged fusion bitaper[J].IEEE Sensor, 2011,11:2891-2894.
  • 10徐峰,李灿,任东旭,卢璐,吕卫卫,冯飞,俞本立.Temperature-insensitive Mach-Zehnder interferometric strain sensor based on concatenating two waist-enlarged fiber tapers[J].Chinese Optics Letters,2012,10(7):11-14. 被引量:9

二级参考文献51

  • 1O. Frazao, P. Caldas, F. M. Araujo, L. A. Ferreira, and J. L. Santos, Opt. Lett. 32, 1974 (2007).
  • 2Y. Liu and L. Wei, Appl. Opt. 46, 2516 (2007).
  • 3F. Pang, W. Liang, W. Xiang, N. Chen, X. Zeng, Z. Chen, and T. Wang, IEEE Photon. Technol. Lett. 21, 76 (2009).
  • 4T. Zhao, Y. Gong, Y. Rao, Y. Wu, Z. Ran, and H. Wu, Chin. Opt. Lett. 9, 050602 (2011).
  • 5C.-Y. Lin, L. A. Wang, and G.-W. Chern, J. Lightwave Technol. 19, 1159 (2001).
  • 6Y. Lin, J. A. R. Williams, and I. Bennion, IEEE Photon. Technol. Lett. 12, 531 (2000).
  • 7J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
  • 8L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, Opt. Express 16, 11369 (2008).
  • 9B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, Opt Express 16, 19291 (2008).
  • 10H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).

共引文献26

同被引文献31

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部