期刊文献+

N掺杂碳纳米管环吸附Fe原子的第一性原理研究 被引量:6

First Principles Study on Adsorbing of Fe on N Doping Carbon Nanotube Rings
在线阅读 下载PDF
导出
摘要 采用基于密度泛函理论的CASTEP程序研究N掺杂碳纳米管环结构在变形作用下,外壁对Fe原子的吸附能力.结果表明,构造出的新型纳米结构的结合能为负值,具有稳定存在的可能性;N掺杂碳纳米管环显著提高外壁对Fe原子的吸附能力,这是因为掺杂体系的活度增大,易与Fe原子间形成Fe-N共价结合键.线性增加拉伸和压缩变形幅度,结构外壁对Fe原子的吸附能呈抛物线式快速下降.相比之下,吸附能对拉伸变形更加敏感. CASTEP program based on density functional theory was employed to study adsorbing of Fe on N doping carbon nanotube rings under deformation. It shows that bonding energy of new construction is negative,which satisfying energy conditions of stable existence. Adsorbing energies of Fe are enhanced since activities of doping system are increased to form Fe-N covalent bonds easily.Increasing stretch and compression deformations linearly,adsorbing energies of Fe reduce rapidly in parabola shape. They are more sensitive to stretch deformations.
出处 《计算物理》 CSCD 北大核心 2016年第3期374-378,共5页 Chinese Journal of Computational Physics
基金 国家自然科学基金(51274142 50671069)资助项目
关键词 碳纳米管 N掺杂 Fe原子吸附 拉伸/压缩变形 CNT N doping adsorbing energy of Fe tensile/compressive deformation
  • 相关文献

参考文献12

  • 1LAI M, SINGHAI S K, SHARMA I, et al. An alternative improved method for the homogeneous dispersion of CNTs in Ca matrix for the fabrication of Cu/CNTs composites[ J]. Appl Nanosic, 2013, 3 (1) : 29 -35.
  • 2SRIVATSAN T S, GODBOLE C, PARANSITHY M, et al. Influence of nano-sized carbon nanotube reinforcements on tensile deformation, cyclic fatigue, and final fracture behavior of magnesium alloy[ J ]. J Mater Sci, 2012, 47 (8) : 3621 - 3638.
  • 3周泽华,朱渊萍.铸造方法制备铸钢/碳纳米管复合材料[J].江西科技师范大学学报,2013,8(6):26-28. 被引量:1
  • 4张继红,魏秉庆,梁吉,高志栋,吴德海.激光熔覆巴基管/球墨铸铁的研究[J].金属学报,1996,32(9):980-984. 被引量:15
  • 5徐强,曾效舒,徐春水,周国华.碳纳米管/球墨铸铁复合材料制备及组织性能的研究[J].铸造技术,2010,31(2):165-168. 被引量:11
  • 6张智明.单原子操控——2012年诺贝尔物理学奖得主Haroche科学成就简介[J].量子光学学报,2012,18(4):305-311. 被引量:1
  • 7YAGI Y, BRIERE T M, SLUITER M H F, eta|. Stable geometries and magnetic properties of single-wall carbon nanotubes doped with 3d transition metals: A first-principles study[J]. Phys Rev B, 2004, 69(7) : 075414.
  • 8PHILIP J H, KEITH R, MATT I J P, et al. Density functional theory in the solid state[J]. Phil Trans R SocA, 2014, 372: 20130270 - 1 - 24.
  • 9PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[ J]. Phys Rev B, 1992, 45(23) : 13244 - 13249.
  • 10MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12) : 5188 -5192.

二级参考文献65

共引文献31

同被引文献41

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部