期刊文献+

关于股票价格优化预测的建模仿真研究 被引量:5

Modeling and simulation of optimized stock price prediction
原文传递
导出
摘要 股票数据具有非线性和含有大量噪声的特点,传统股票预测模型难以充分识别股票非线性特征以及降低噪声,导致预测精度不高.为了提高预测精度,去除冗余特征并加强特征的区分度,引入流形学习中的线性局部切空间排列算法,提出了一种新的支持向量回归机的股价预测优化模型.首先利用线性局部切空间排列算法对股票原始数据进行特征提取,然后采用支持向量回归机对提取到的特征和股票价格之间的非线性关系建模,并利用遗传算法优化支持向量回归机的参数,最终提高股票价格的预测精度.为证明模型的有效性,采用标准普尔500指数在2012—2013年、2014—2015年2个时间段内的股票数据进行检验.实验证明,提出的模型相较其他对比模型具有更高的预测精度,更强的泛化能力. Stock data has the characteristics of nonlinearity and lots of noise. Traditional stock prediction models cannot sufficiently recognize the nonlinear features and reduce noise in stock data, which leads to low prediction accuracy.In order to improve the prediction accuracy, remove redundant attributes and enhance discriminability of features, this study cites linear local tangent space alignment from manifold learning and proposes a novel stock price prediction model based on optimized support vector regression.Firstly ,linear local tangent space alignment algorithm is used to extract features of original stock data.Then support vector regression is utilized to model the nonlinear relationship between those features and stock close price. Meantime genetic algorithm is used to optimize parameters of support vector regression.Finally ,the prediction accuracy is improved.To validate the ef- fectiveness of the model,S&P 500 index stock data from the year 2012 to 2013,and the year 2014 to 2015 is a- dopted.The experiments prove that the proposed model outperforms others and has higher accuracy and more powerful generalization ability.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第4期536-542,共7页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61379158)
关键词 股票预测 遗传算法优化 线性局部切空间排列 支持向量回归机 stock price prediction genetic algorithms linear local tangent space alignment support vector regression
  • 相关文献

参考文献12

  • 1王泳.股票投资短期预测的多模匹配识别算法[J].计算机应用,2014,34(A02):180-183. 被引量:2
  • 2ARIYO A A, ADEWUMI A O, AYO C K. Stock price prediction using the ARIMA model[ C] .UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 2014:106-112.
  • 3GOCKENn M,0ZCAL1CI M,BORU A,et al.Integrating metaheuristics and artificial neural Networks for im- proved stock price prediction [ J ]. Expert Systems with Applications, 2015,44(C) : 320-331.
  • 4吴春国,朱世钊,汪秉宏,关昱航.用于非线性时间序列预测的POD-RBF神经网络[J].小型微型计算机系统,2013,34(8):1848-1851. 被引量:3
  • 5TALARPOSI-ITI F M, SADAEI H J, ENAYATIFAR R, et al.Stock market forecasting by using a hybrid model of exponential fuzzy time series [ J ]. International Journal of Approximate Reasoning, 2015,70: 79-98.
  • 6SHI H, LIU X.Application on stock price prediction of Elman neural networks based on principal component a- nalysis method[ C]. l lth International Computer Confer- ence on Wavelet Active Media Technology and Informa- tion Processing (ICCWAMTIP) ,2014:411-414.
  • 7KAO L J,CHIU C C,LU C J,et al.A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting [ J ]. Decision Support Systems, 2013,54 (3) : 1 228-1 244.
  • 8苏治,傅晓媛.核主成分遗传算法与SVR选股模型改进[J].统计研究,2013,30(5):54-62. 被引量:26
  • 9ZHANG T, YANG J, ZHAO D, et al. Letters : Linear lecal tangent space alignment and application to face recogni- tion [ J ].Neurocomputing, 2007,70(7-9) : 1 547-1 553.
  • 10薛巍,王正群,徐春林,李峰,周中侠.线性局部切空间排列的传播半监督学习方法[J].计算机应用研究,2014,31(8):2334-2337. 被引量:2

二级参考文献60

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:76
  • 2彭丽芳,孟志青,姜华,田密.基于时间序列的支持向量机在股票预测中的应用[J].计算技术与自动化,2006,25(3):88-91. 被引量:32
  • 3T.C. Chu, C.T. Tsao, Y.R. Shiue. Application of fuzzy multiple attribute decision making on company analysis for stock selection [J]. Proceedings of Soft Computing on Intelligent Systems and Information Processing, 1996 (2) : 509 - 514.
  • 4M.R. Zargham, M. R. Sayeh, A web-based information system for stock selection and evaluation [ J ]. Proceedings of the FirstInternational Workshop on Advance Issues of E-Commerce and Web-Based Information Systems, 1999 ( 5 ) : 81 - 83.
  • 5T. -S. Quah, B. Srinivasan, Improving returns on stock investment through neural network selection [ J ]. Expert Systems with Applications, 1999 ( 17 ) :295 - 301.
  • 6N. Chapados, Y. Bengio, Costfunctions and model combination for VaR-based asset allocation using neural networks [ J ]. IEEE Transactions on Neural Networks,2001 (12) :890 -906.
  • 7K.-J. Kim, I. Han, Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index[ J ]. Expert Systems with Applications, 2000 ( 19 ) : 125 - 132.
  • 8M. Caplan, Y. Becket, Lessons learned using genetic programming in a stock picking context [ M ]. Genetic Programming Theory and Practice II, New York:Ann Arbor, 2004:87 -102.
  • 9V.N. Vapnik, The Nature of Statistical Learning Theory[ M ]. New York: Springer-Verlag, 1995.
  • 10J. Yang, V. Honavar, Feature subset selection using a genetic algorithm [ J ]. IEEE Intelligent Systems, 1998 ( 13 ) :44 - 49.

共引文献31

同被引文献26

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部