期刊文献+

无人机快速着陆控制律设计及仿真验证 被引量:5

Design and Simulation of UAV Fast-landing Control Law
在线阅读 下载PDF
导出
摘要 在无人机着陆优化控制的研究中,由于在快速着陆过程中无人机速度与下沉率不断上升的问题,故控制律需要对轨迹进行精确跟踪并在着陆过程末端增加俯仰角,减小下沉率。在控制律设计过程中,提出了鲁棒伺服LQR(RSLQR)和比例-积分-微分(PID)控制方法。首先根据快速着陆轨迹线,设计了以C*为控制变量的鲁棒伺服控制律,然后在C*控制律的基础上,利用PID方法设计了无人机高度及高度变化率控制律,并在非线性环境下进行了仿真。仿真结果表明,上述着陆控制律可以引导无人机沿所设计的轨迹线着陆,并在着陆末端可以减小下沉率,增大俯仰角,鲁棒性强,控制精度高。仿真结果为无人机快速着陆的研究提供科学依据。 Along with the improvement of aerodynamic layout technology, the UAV has adapted to using the fast- landing method whch is based on the steep gliding angle. Because during the fast-landing process, the problems that vector and sinking rate keep increasing exsiste, the control law must follow the track line and decrease the sinking rate and increase the pitch angle at the end of the landing process. So the Robust Servomechanism LQR (RSLQR) and Proportion-Integrator-Derivative (PID) control methods were used during the design of control law. According to the fast-landing track line, a RSLQR control law with a control variable of C * was designed first, then the height control law and the sink rate control law were designed using the PID method based on the C * RSLQR control law, and the control laws were simulated under the un-linear environment. The simulation result shows that the control law can lead the UAV landing by gliding along the designed track line, decrease the sinking rate, and increase the pitch angle. It has a strong robustness and high accuracy, and can meet the quest of UAV fast landing.
出处 《计算机仿真》 CSCD 北大核心 2016年第7期141-146,共6页 Computer Simulation
关键词 无人机 陡下滑角 快速着陆 鲁棒伺服 比例-积分-微分 UAV Steep glide angle Fast-landing RSLQR PID
  • 相关文献

参考文献5

  • 1Gregg H Barton, Steven G Tragesser. Autolading Trajectory Design for the X-34[ J]. AIAA atmospheric flight conference and exhibit, Portland, Oregon, August 9-11, 1999: 15-30.
  • 2车军,张新国.自动着陆精确轨迹跟踪控制[J].北京航空航天大学学报,2005,31(9):975-979. 被引量:15
  • 3张剑锋,刘秉华,贾彩娟.无人机的自动着陆控制[J].控制理论与应用,2009,26(12):1383-1386. 被引量:12
  • 4Kevin A Wise. A Bank-to-Turn Missile Autopilot Design Ap- proach Using Loop Transfer Recovery [ J ]. Journal of Guidance, 1990,13(1) :145-152.
  • 5Kamuran Turkogul, Elbrousm Jafarov. Augm-Ented optional LQR control system design for the longitudinal flight dynamics of an UAV:I-nner and outer loop concepts[ C]. Proceeding of the 9th WSEAS International Conference Automatic Control, Modeling and Simulation. Istanbul, Turkey, May 27 ~ 29, 2007 : 100-105.

二级参考文献10

  • 1朱家强,朱纪洪,郭锁凤,孙增圻.基于神经网络的鲁棒自适应逆飞行控制[J].控制理论与应用,2005,22(2):182-188. 被引量:21
  • 2车军,张新国.自动着陆精确轨迹跟踪控制[J].北京航空航天大学学报,2005,31(9):975-979. 被引量:15
  • 3苏浩秦,于红艳,邓建华.逐点线性化后退区间最优控制在飞机非线性控制中的应用[J].控制理论与应用,2007,24(1):53-58. 被引量:2
  • 4CAO Y F, TAO Y, SHEN Y Z. Guidance and control for automatic landing of UAV[J]. Transaction of Nanjing University of Aeronautics & Astronautics, 2001, 18(2): 228 - 230.
  • 5SAUSSIE D, AKHRIF O, SAYDY L. Robust and scheduled flight control with handling quality requirements Saussie[C].//AIAA Guidance Navigation and Control Conference. San Francisco, California: AIAA, 2005, 2:1488 - 1495.
  • 6Chen D, Paden B. Stable inversion of nonlinear non-minimum phase systems[J]. International Journal of Control, 1996, 64, ( 1 ) : 8197.
  • 7Devasia S. Output tracking with nonhyperbolic and near nonhyperbolic internal dynamics : helicopter hover control[ A ]. Proceedings of the American Control Conference [ C ]. Evanston : American Automatic Control Council, 1997. 1439- 1446.
  • 8Che J, Chen D. Automatic landing control using Ha control and stable inversion[A]. Proceedings of the 40th IEEE Conference on Decision and Control[ C]. Piscataway : Institute of Electrical and Electronic Engineers Inc, 2001. 241 - 246.
  • 9Parkinson B. Global positioning system: theory and applications,volume Ⅱ[ M ]. Cambridge: American Institute of Aeronautic and Astronautics, 1996. 397-425.
  • 10张明廉.飞行控制系统[M].北京:国防工业出版社,1984.

共引文献24

同被引文献41

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部